
Birzeit University Aziz M. Qaroush
First Semester

2015/2016

FEATURE EXTRACTION

Outline
2

 Element of Image Analysis

 Feature Extraction Overview

 Image Main features

 Local and Texture Feature

 Color Feature

 Shape feature

 Features Post processing/Analysis

Element of Image Analysis
3

Preprocess
Image Acquisition, Enhancement, and Restoration

Intermediate process
Feature extraction & Image segmentation

High level process
Image interpretation and recognition

Features Extraction
4

 Feature = “point of interest” for image description

 Features should contain information required to distinguish
between classes

 Should be insensitive to irrelevant variability in the input

 Main goal of feature extraction

 Obtain the most relevant information from the original
data

 Represent that information in a lower dimensionality
space.

Features Extraction
5

 Feature extraction is a special form of dimensionality
reduction
 When the input data is too large to be processed and it is

suspected to be redundant (much data, but not much
information) then the input data will be transformed into a
reduced representation set of features (also named features
vector).

 Used by classifiers to recognize the input unit

 Used in many applications such as
 Character recognition

 Reading bank deposit slips

 data entry

 Image retrieval

 …….

Features Extraction Classification
6

 Features can be classified as:

General features:
 Application independent features such as color, texture, and

shape.

 According to the abstraction level, they can be further divided
into:

 Pixel-level features: Features calculated at each pixel, e.g.
color, location.

 Local features: Features calculated over the results of
subdivision of the image band on image segmentation or
edge detection.

Global features: Features calculated over the entire image
or just regular sub-area of an image.

Features Extraction Classification
7

 Features can be classified as:

 Domain-specific features:

 Application dependent features: such as human faces,
fingerprints, Characters, and conceptual features.

 These features are often a synthesis of low-level features
for a specific domain.

Features Extraction Classification
8

 On the other hand, all features can be coarsely
classified into:
 Low-level features: features can be extracted directed

from the original images

 Edges

 Corners

 Interest points

 High-level features: high-level feature extraction must be
based on low level features

 Shape

 Template Matching

Characteristics of good features
9

 Identifiability: shapes which are found perceptually
similar by human have the same feature different from
the others.

 Repeatability: The same feature can be found in several
images despite geometric (Translation, rotation and
scale invariance) and photometric (Intensity)
transformations

 Noise resistance: features must be as robust as possible
against noise, i.e., they must be the same whichever be
the strength of the noise in a give range that affects the
pattern.

Efficiency of features
10

 Occultation invariance: when some parts of a shape are
occulted by other objects, the feature of the remaining
part must not change compared to the original shape.

 Statistically independent: two features must be
statistically independent. This represents compactness of
the representation.

 Reliable: as long as one deals with the same pattern, the
extracted features must remain the same.

What is best method for feature extraction
11

 It all depends on your application at hand. Few things
you should keep in mind are:

 Feature extraction is highly subjective in nature

 There is no generic feature extraction scheme which
works in all cases.
What kind of problem are you trying to solve? e.g.

classification, regression, clustering, etc.

Do you have a lot of data?

Do your data have very high dimensionality?

 Is your data labelled?

Do you want to use a very computationally intensive method or
something rather inexpensive?

Image Features
12

 Image Main Features:
 Local Features

 Color Features

 Shape Features

Local Features – Motivation
13

 Panorama stitching

 We have two images – how do we combine them?

Local Features – Motivation
14

 Panorama stitching

 We have two images – how do we combine them?

Extract and match features

Why extract features?
15

 Panorama stitching

 We have two images – how do we combine them?

Align images

Local Features
16

 Features that can be extracted automatically from an
image without any shape information (information
about spatial relationships)

 Can be used in high-level feature extraction, where we
find shapes in Images.

 Types

 Edge

 Corner

 Interest points

Local Features extraction: main components
17

1. Detection: Identify the
interest points

2. Description :Extract feature
vector descriptor surrounding
each interest point.

3. Matching: Determine
correspondence between
descriptors in two views

Edge

Corner

Interest Points

Local Features

Local Features - Edge
19

Edge Detection
20

 It is not unusual to find the three types of edges in one image

Edge Detection
21

Original image

Edge

Edge Detection
22

Gray level profile

The 1st derivative

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 -0.2
0

0.2
0.4
0.6
0.8

1
1.2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 -5
-4
-3
-2
-1
0
1
2
3
4
5

x 10 -3

Edge Edge

Minimum
point

Maximum
point

+ +
- -

Zero
crossing

In
te

n
si

ty

The 2nd derivative

Therefore, for detecting edges, we can apply zero crossing detection to the 2nd derivative
image or thresholding the absolute of the 1st derivative image

Edge Detection Using Gradient
23

Edge Detection Using Gradient
24

Edge Detection Using Gradient
25

Edge Detection Using Gradient
26

Edge Detection Using Gradient
27

Edge Detection Using Gradient
28

Edge Detection Using Gradient
29

Edge Detection Using Gradient
30

Edge Detection Using Gradient
31

Effects of noise

 Consider a single row or column of the image
 Plotting intensity as a function of position gives a signal

Where is the edge?

Edge Detection with Noise
33

Solution: smooth first

Where is the edge? Look for peaks in

Derivative theorem of convolution

This saves us one operation:

Laplacian of Gaussian

 Look for zero-crossings of

Laplacian of Gaussian

operator

2D edge detection filters

 is the Laplacian operator:

Laplacian of Gaussian Gaussian derivative of Gaussian

Quality of an Edge
38

Advanced Edge Detection Method - Canny Edge Detector
 39

 The Canny algorithm has three goals:

Good Detection: The optimal detector must minimize
the probability of false positives as well as false
negatives.

Good Localization: The edges detected must be as
close as possible to the true edges.

 Single Response Constraint: The detector must return
one point only for each edge point.

Canny Algorithm
40

 The Process of Canny edge detection algorithm can be
broken down to 5 different steps:

1. Apply Gaussian filter to smooth the image in order to
remove the noise

2. Find the intensity gradients of the image

3. Apply non-maximum suppression to get rid of spurious
response to edge detection

4. Apply double threshold to determine potential edges

5. Track edge by hysteresis: Finalize the detection of edges
by suppressing all the other edges that are weak and not
connected to strong edges.

Canny Algorithm – Step 1
41

 Since edge detection is susceptible to noise in the
image, first step is to remove the noise in the image
with a 5x5 Gaussian smoothing filter.

Canny Algorithm – Step 2
42

 The second step is to use Sobel masks to find the edge
gradient strength and direction for each pixel.

 The magnitude, or edge strength, of the gradient is then
approximated using the formula: |G| = |Gx| + |Gy|

 The direction of the edge is computed using the gradient in
the x and y directions

)/(tan],[1 GxGyji

Canny Algorithm – Step 3
43

 Gradient Orientation
 Reduce angle of Gradient θ[i,j] to one of the 4 sectors

 Check the 3x3 region of each M[i,j]

 Any edge direction falling within the yellow range (0 to 22.5 &
157.5 to 180 degrees) is set to 0 degrees. Any edge direction falling
in the green range (22.5 to 67.5 degrees) is set to 45 degrees. Any
edge direction falling in the blue range (67.5 to 112.5 degrees) is
set to 90 degrees. And finally, any edge direction falling within the
red range (112.5 to 157.5 degrees) is set to 135 degrees.

Canny Algorithm – Step 4
44

 The edge extracted from the gradient value is still quite
blurred.

 Non-maximum suppression can help to suppress all the
gradient values to 0 except the local maximal, which
indicates location with the sharpest change of intensity
value.

 The algorithm for each pixel in the gradient image is:
 Compare the edge strength of the current pixel with the edge

strength of the pixel in the positive and negative gradient
directions.

 If the edge strength of the current pixel is the largest compared
to the other pixels in the mask with the same direction (i.e., the
pixel that is pointing in the y direction, it will be compared to
the pixel above and below it in the vertical axis), the value will
be preserved. Otherwise, the value will be suppressed.

Canny Algorithm – Step 4
45

 Non-maximum Suppression
 For each pixel (i,j):
 Find the direction dk, which best approximates the direction

 Check the 3x3 region of each M[i,j]

 If M[i,j] is smaller than at least one of its two neighbors along dk,
assign I[i,j]=0; otherwise assign I[i,j]=M[i,j]

12010232

10100232

31001230

00112310

01121200

13121003

31110000

0 2 0 1 0 0 3 0

1 0 1 0 0 0 3 0

0 0 0 0 0 2 3 0

0 0 0 0 0 3 0 0

0 0 0 2 1 2 0 0

0 3 1 2 0 0 0 3

3 0 0 0 0 0 0 0

Canny Algorithm – Step 4
46

Canny Algorithm – Step 5
47

 Hysteresis Thresholding
 The image output by NONMAX- SUPPRESSION I[i,j] still

contains the local maxima created by noise. How do we get
rid of these?

 Reduce number of false edges by applying a threshold T

 All values below T are changed to 0

 Selecting a good values for T is difficult

 Some false edges will remain if T is too low

 Some edges will disappear if T is too high

 Some edges will disappear due to softening of the edge contrast
by shadows

Canny Algorithm – Step 5
48

 Hysteresis Thresholding
 Double Thresholding
 Two threshold values, TL and TH are applied to I[i,j].
 Here TL < TH

 Two images in the output

 The image from TL contains fewer edges but has gaps in the
contours

 The image from TL has many false edges

 Combine the results from TL and TH

 Link the edges of TH into contours until we reach a gap

 link the edge from TH with edge pixels from a TL contour until a
TH edge is found again

Canny Algorithm – Step 5
49

 Hysteresis Thresholding

 A TH contour has pixels along the green arrows

 Linking: search in a 3x3 of each pixel and connect the

 pixel at the center with the one having greater value

 Search in the direction of the edge (direction of Gradient)

TH=2 TL=1

02000030

00000030

00000230

00000300

00020200

03020000

30000000

02010030

10100030

00000230

00000300

00021200

03120000

30000000

gaps

filled

from

T1

Canny Algorithm – Step 5
50

 Hysteresis Thresholding

Canny Algorithm
51

 Stages in Canny edge detection - Example

Canny Edge Detection
52

Canny Edge Detection Summery
53

 The performance of the Canny algorithm depends heavily
on the adjustable parameters, , which is δ and the
threshold values, ‘T1’ and ‘T2’.
 The bigger the value for δ, the larger the size of the Gaussian

filter becomes. This implies more blurring, necessary for noisy
images, as well as detecting larger edges.

 However, the larger the scale of the Gaussian, the less accurate
is the localization of the edge.

 The user can tailor the algorithm by adjusting these parameters
to adapt to different environments.

 Canny’s edge detection algorithm is computationally more
expensive compared to Sobel, Prewitt and Robert’s operator.
However, the Canny’s edge detection algorithm performs better
than all these operators under almost all scenarios

Edge Detection Summery
54

 Since edge detection is the initial step in object
recognition, it is important to know the differences
between edge detection techniques.

 Gradient-based algorithms such as the Prewitt filter have a
major drawback of being very sensitive to noise.

 The size of the kernel filter and coefficients are fixed and cannot
be adapted to a given image.

 An adaptive edge-detection algorithm is necessary to provide a
robust solution that is adaptable to the varying noise levels of
these images to help distinguish valid image contents from
visual artifacts introduced by noise.

Edge Detection Summery
55

Original

Roberts

Sobel

Prewitt

Edge Detection Summery
56

Sobel Roberts

Original Canny

Edge Detection Summery
57

(a) Original
Image with
Noise

(b) Sobel
(c) Robert
(d) Canny

Edge Detection Summery
58

 SOFT COMPUTING APPROACHES

 Fuzzy based Approach

 Genetic Algorithm Approach

 Neural Network Approach

 Soft computing approaches, are applied on a real
life example image of nature scene

Edge Detection Summery
59

Original Roberts Sobel

Fuzzy Genetics Neural Network

Edge Linking and Boundary Detection
60

Local Edge Linking
61

Local Edge Linking
62

Local Edge Linking
63

Global Edge Linking and Hough Transform
64

Hough Transform
65

Hough Transform
66

Hough Transform
67

Hough Transform
68

Hough Transform
69

 Example: We want to segment the two edges of the
principle runway

Are Edge Invariant to Transformations?
70

 Invariance:
 We want features to be detected despite geometric or

photometric changes in the image: if we have two transformed
versions of the same image, features should be detected in
corresponding locations

 Models of Image Change - Transformation
 Geometry

 Rotation

 Similarity (rotation + uniform scale)

 Affine (scale dependent on direction)
valid for: orthographic camera, locally planar object

 Photometry

 Affine intensity change (I a I + b)

Are Edges Invariant to Transformations?
71

 Edges are usually defined as sets of points in the image
which have a strong gradient magnitude

 Edges can be invariant to brightness changes but typically
not invariant to other transformations

https://en.wikipedia.org/wiki/Gradient

Edge

Texture Features
Corner

Interest Points

Local Features

Texture Features: What´s in the image?
73

 Texture is a tactile or visual characteristic of a surface.

 In general, color is usually a pixel property while
texture can only be measured from a group of pixels.

 Aim: Texture gives us information about the spatial
arrangement of the colors or intensities in an image.

 To find a unique way of representing the underlying
characteristics of textures and represent them in some
simpler but unique form, so then they can be used to
accurately and robustly classify and segment objects.

Texture Features
74

 Basically, texture representation methods can be
classified into two categories:

 Structural approach: Texture is a set of primitive texels in
some regular or repeated relationship.

 Texel: A small geometric pattern that is repeated frequently on
some surface resulting in a texture.

 Work well for man-made and regular patterns

 Statistical approach: Texture is a quantitative measure of
the arrangement of intensities in a region.

 More general and easier to compute and is used more often in
practice.

Structural approach
75

 Structural approaches model texture as a set of texture
primitives (also called texels (texture elements)) in a
particular spatial relationship (also called lattice or grid
layout).

 A structural description of a texture includes a
description of the primitives and a specification of their
placement patterns.

 The primitives must be identifiable and their
relationships must be efficiently computable.

Structural approach
76

Statistical approach
77

 Usually, segmenting out the texels is difficult or even
impossible in real images.

 Instead, numeric quantities or statistics that describe a
texture can be computed from the gray tones or colors
themselves.

 Statistical methods analyze the spatial distribution of gray
values, by computing local features at each point in the
image, and deriving a set of statistics from the distributions
of the local features.

 This approach can be less intuitive, but is computationally
efficient and often works well.

Statistical approach
78

 Depending on the number of pixels defining the local
feature statistical methods can be further classified into
 First-order (one pixel)

 Second-order (two pixels)

 Higher-order (three or more pixels) statistics.

 The basic difference is that:
 First-order statistics estimate properties (e.g. average and

variance) of individual pixel values, ignoring the spatial
interaction between image pixels,

 Second- and higher-order statistics estimate properties of two
or more pixel values occurring at specific locations relative to
each other.

Some Statistical Approachs
79

 Some statistical approaches for texture:
 Corner Detection

 Co- occurrence matrices

 Local binary patterns

 Statistical moments

 Autocorrelation

 Markov random fields

 Autoregressive models

 Mathematical morphology

 Interest points – SIFT, SURF…

 Fourier power spectrum

 Gabor filters

Texture Features - Corner
80

 A corner can be defined as the intersection of two
edges.

 Can also be defined as a point for which there are two
dominant and different edge directions in a local
neighborhood of the point.

 Corner detection is frequently used in motion
detection, image registration, video tracking, image
matching, and object recognition.

 Edge detection that can be used with post-processing
to detect corners
 Kirsch operator

 Frei-Chen masking set.

Corner Detection
81

 Several proposed approaches for corner detection:
 Moravec corner detection algorithm

 The Harris & Stephens corner detection algorithms

 The level curve curvature approach

 Laplacian of Gaussian, differences of Gaussians and determinant
of the Hessian scale-space interest points

 The Wang and Brady corner detection algorithm

 The SUSAN corner detector

 ……

 One determination of the quality of a corner detector is its
ability to detect the same corner in multiple similar images,
under conditions of different lighting, translation, rotation,
Scaling, and other transforms.

Finding Corners
82

 Key property: in the region around a corner, image gradient has
two or more dominant directions
 Idea:

 Exactly at a corner, gradient is ill defined.
 However, in the region around a corner, gradient has two or more

different values.

 Corners are repeatable and distinctive.
 Edge detectors perform poorly at corners

Harris Detector - The Basic Idea
83

 We should easily recognize the point by looking through a small window

 Shifting a window in any direction should give a large change in
intensity

“flat” region:

no change in

all directions

“edge”:

no change along

the edge direction

“corner”:

significant change

in all directions

Find locations such that the minimum change caused by
shifting the window in any direction is large

Harris Detector - The Basic Idea
84

 Consider shifting the window W by (u,v)

 How do the pixels in W change?

 Compare each pixel before and after using the sum of
squared differences (SSD)

 This defines an SSD “error”E(u,v):

Sum of Squared Differences (SSD) Profile
85

Harris Detector: Step 1 - Compute the Gradient

2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y

 Change of intensity for the shift [u,v]:

Intensity Shifted
intensity

Window
function

or Window function w(x,y) =

Gaussian 1 in window, 0 outside

Taylor Series Representation
87

Taylor series is a representation of a function as an
infinite sum of terms that are calculated from the
values of the function's derivatives at a single point.

Harris Detector: Step 1 - Compute the Gradient

 Small motion assumption

Harris Detector: Step 1 - Compute the Gradient
89

Harris Detector: Step 2 - Compute the Eigenvalues
90

 This can be rewritten:

 For the example above:
 You can move the center of the green window to anywhere on

the blue unit circle

 How do we find directions that will result in the largest and
smallest E values?

 Find these directions by looking at the eigenvectors of M

M

Harris Detector: Step 2 - Compute the Eigenvalues
91

 Interpreting the second moment matrix

 First, consider the axis-aligned case (gradients are either
horizontal or vertical)

 If either λ is close to 0, then this is not a corner, so look for
locations where both are large.

 If there are two large eigenvalues there is a corner; and if
one an edge

Harris Detector: Step 2 - Compute the Eigenvalues
92

Harris Detector: Step 2 - Compute the Eigenvalues

 Intensity change in shifting window: eigenvalue analysis

 Since M is symmetric, we have

 We can visualize Mas an ellipse with axis lengths determined
by the eigenvalues and orientation determined by R

 (,) ,
u

E u v u v M
v

1, 2 eigenvalues of M

direction of the

slowest change

direction of the

fastest change

(max)
-1/2

(min)
-1/2

Ellipse E(u,v) = const

Harris Detector: Step 3 Classification of Eigenvalues

1

2

“Corner”
1 and 2 are large,

 1 ~ 2;

E increases in all

directions

1 and 2 are small;

E is almost constant

in all directions

“Edge”
1 >> 2

“Edge”
2 >> 1

“Flat”
region

Classification of
image points using
eigenvalues of M:

Harris Detector: Step 4 Measure Corner Response

 Measure of corner response:

2

det traceR M k M

1 2

1 2

det

trace

M

M

(k – empirical constant, k = 0.04-0.06)

Harris Detector: Step 4 Measure Corner Response

1

2

“Corner”

“Edge”

“Edge”

“Flat”

 R depends only on
eigenvalues of M

 R is large for a corner

 R is negative with
large magnitude for an
edge

 |R| is small for a flat
region

R > 0

R < 0

R < 0 |R| small

Harris Detector: Workflow

Harris Detector: Compute corner response R

Harris Detector: Find points with large corner

response: R>threshold

Harris Detector: Take only the points of local

maxima of R

Harris Detector: Workflow

Harris Detector: Summary

 Compute Gaussian derivatives at each pixel

 Compute second moment matrix Min a Gaussian
window around each pixel

 Compute corner response function R

 Threshold R

 Find local maxima of response function (nonmaximum
suppression)

Harris Detector: Summary
103

Other Version of Harris Detectors
104

Are Corners Invariant to Transformations?
105

 Invariance:
 We want features to be detected despite geometric or

photometric changes in the image: if we have two transformed
versions of the same image, features should be detected in
corresponding locations

 Models of Image Change - Transformation
 Geometry

 Rotation

 Similarity (rotation + uniform scale)

 Affine (scale dependent on direction)
valid for: orthographic camera, locally planar object

 Photometry

 Affine intensity change (I a I + b)

Harris Detector: Some Properties

 Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues)

remains the same

Corner response R is invariant to image rotation

Harris Detector: Some Properties

 Rotation Invariant Detection

Repeatability rate:

correspondences

possible correspondences

Harris Detector: Some Properties

 Partial invariance to affine intensity change

 Only derivatives are used => invariance

to intensity shift I I + b

 Intensity scale: I a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

Harris Detector: Some Properties

 But: non-invariant to image scale!

All points will be

classified as edges
Corner !

Not invariant to scaling

Harris Detector: Some Properties

 Quality of Harris detector for different scale changes

Repeatability rate:

correspondences

possible correspondences

Edge

Corner

Interest Points

Local Features

Texture extraction by Interest Points
112

 What is an interest point
 Expressive texture
 The point at which the direction of the boundary of object

changes abruptly

 Intersection point between two or more edge segments

 Goal: Detect points that are repeatable and distinctive

Properties of Interest Point Detectors
113

 Detect all (or most) true interest points

 No false interest points

 Well localized.

 Robust with respect to noise.

 Efficient detection

 Invariant to transformation

Interest Point Detection Idea
114

 Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

Local features extraction: main components
115

1. Detection: Identify the
interest points

2. Description :Extract feature
vector descriptor surrounding
each interest point.

3. Matching: Determine
correspondence between
descriptors in two views

Key trade‐offs
116

Corner as an Interest Point
117

Scale Space
118

 The concept of scale is essential when computing
features and descriptors from image data.

 Real-world objects may contain different types of
structures at different scales and may therefore appear
in different ways depending on the scale of observation.

 When observing objects by a camera or an eye, there is
an additional scale problem due to perspective effects,
implying that distant objects will appear smaller than
nearby objects.

 A vision system intended to operate autonomously on
image data acquired from a complex environment must
therefore be able to handle and be robust to such scale
variations.

Scale Invariant Detection
119

 Consider regions (e.g. circles) of different sizes around
a point

 Regions of corresponding sizes will look the same in
both images

Scale Invariant Detection
120

 The problem: how do we choose corresponding circles
independently in each image?

Scale Invariant Detection
121

 Solution:
 Design a function on the region (circle), which is “scale

invariant” (the same for corresponding regions, even if
they are at different scales)
 Example: average intensity. For corresponding regions (even of

different sizes) will be the same.

 For a point in one image, we can consider it as a function
of region size (circle radius)

Scale Invariant Detection
122

Scale Invariant Detection
123

 Common approach: Take a local maximum of this
function

 Observation: region size, for which the maximum is
achieved, should be invariant to image scale.

scale = 1/2

f

region size

Image 1 f

region size

Image 2

s1 s2

Important: this scale invariant region size is found
in each image independently!

Scale Invariant Detection
124

 A “good” function for scale detection: has one
stable sharp peak

f

region size

bad

f

region size

bad

f

region size

Good
!

• For usual images: a good function would be a
one which responds to contrast (sharp local
intensity change)

Scale invariance

 Requires a method to repeatably select points in
location and scale

 The only reasonable scale-space kernel is a Gaussian

 An efficient choice is to detect peaks in the difference
of Gaussian pyramid

 Difference-of-Gaussian with constant ratio of scales is
a close approximation to scale-normalized Laplacian

125

Blur

Resample

Subtract

Blur

Resample

Subtract

Pyramid
126

 Pyramid is one way to represent images in Multi‐Scale

 Pyramid can capture global and local features

Aside: Image Pyramids
127

Bottom level is the original image.

2nd level is derived from the

original image according to

some function

3rd level is derived from the

2nd level according to the same

funtion

And so on.

Aside: Mean Pyramid
128

Bottom level is the original image.

At 2nd level, each pixel is the mean

of 4 pixels in the original image.

At 3rd level, each pixel is the mean

of 4 pixels in the 2nd level.

And so on.

mean

SIFT - Scale Invariant Feature Transforms
129

 SIFT image features provide a set of features of an object
that are not affected by many of the complications
experienced in other methods, such as object scaling and
rotation.

 While allowing for an object to be recognized in a larger
image SIFT image features also allow for objects in multiple
images of the same location, taken from different positions
within the environment, to be recognized.

 SIFT features are also very resilient to the effects of "noise"
in the image.

 The SIFT approach, for image feature generation, takes an
image and transforms it into a "large collection of local
feature vectors"

SIFT - Idea
130

 Image content is transformed into local feature
coordinates that are invariant to translation,
rotation, scale, and other imaging parameters

Claimed Advantages of SIFT
131

 Locality: features are local, so robust to occlusion and clutter
(no prior segmentation)

 Distinctiveness: individual features can be matched to a large
database of objects

 Quantity: many features can be generated for even small
objects

 Efficiency: close to real-time performance

 Extensibility: can easily be extended to wide range of
differing feature types, with each adding robustness

Uses for SIFT
132

 Feature points are used also for:

 Image alignment

 3D reconstruction

 Motion tracking

 Object recognition

 Indexing and database retrieval

 Robot navigation

 … many others

Overall Procedure at a High Level
133

 Step 1: Constructing a scale space

 Step 2: Laplacian of Gaussian approximation

 Step 3: Finding Keypoints

 Step 4: Eliminate edges and low contrast regions

 Step 5: Assign an orientation to the keypoints

 Step 6: Generate SIFT features

Constructing a scale space
134

 This stage of the filtering attempts to identify those locations
and scales that are identifiable from different views of the same
object.

 This can be efficiently achieved using a "scale space" function.
 The scale space is defined by the function:

 L(x, y, σ) = G(x, y, σ) * I(x, y)

 Where:
 * is the convolution operator,
 L is a blurred image
 G is the Gaussian Blur operator
 I is the input image.
 x,y are the location coordinates
 σ is the “scale” parameter. Think of it as the amount of blur. Greater

the value, greater the blur.

Constructing a scale space
135

 Example:

Constructing a scale space
136

 SIFT takes scale spaces to
the next level.

 Resize the original image
to half size. And you
generate blurred out
images again. And you
keep repeating.

Step 2: Laplacian of Gaussian approximation
137

 To find key points use Laplacian of Gaussian (LoG)
 Take an image, and blur it a little.

 Then calculate second order derivatives on it (or, the
“laplacian”).

 The problem is, calculating all those second order
derivatives is computationally intensive.

 Solution, use the Difference of Gaussians (DoG).
 We use the scale space (from previous step).

 We calculate the difference between two consecutive
scales.

 These DoG images are a great for finding out interesting
key points in the image

Step 2: Laplacian of Gaussian approximation
138

These Difference of Gaussian images are approximately equivalent to
the Laplacian of Gaussian. And we’ve replaced a computationally
intensive process with a simple subtraction (fast and efficient).

Step 2: Laplacian of Gaussian approximation
139

How many scales per octave?
140

 A collection of 32 real images drawn from a diverse range, including:
 Outdoor scenes, human faces, aerial photographs, and industrial

 Each image was then subject to a range of transformations:
 Rotation, scaling, affine stretch, change in brightness and

 contrast, and addition of image noise.

Initial value of sigma
141

Step 3: Finding Keypoints
142

 To detect the local maxima and
minima of D(x, y, σ)

 Each point is compared with its
8 neighbors at the same scale,
and its 9 neighbors up and
down one scale.

 X is marked as a “key point” if it
is the greatest or least of all 26
Neighbours

 Large number of extrema,

 computationally expensive

 Detect the most stable subset
with a coarse sampling of scales

Step 4: Eliminate edges and low contrast regions
143

 Key points generated in the previous step produce a lot
of key points. Some of them lie along an edge, or they
don’t have enough contrast. In both cases, they are not
useful as features, so we need to get rid of them.

 Reject points with bad contrast:

 DoG smaller than 0.03 (image values in [0,1])

 Reject edges

 Use Harris detector and keep only corners

Step 4: Eliminate edges and low contrast regions
144

Step 5: Assign an orientation to the keypoints
145

 After step 4, we have legitimate key points.
 We already know the scale at which the keypoint was detected

(it's the same as the scale of the blurred image). So we have
scale invariance.

 The next thing is to assign an orientation to each keypoint.
This orientation provides rotation invariance

 This step aims to assign a consistent orientation to the
keypoints based on local image properties. The keypoint
descriptor, can then be represented relative to this
orientation, achieving invariance to rotation.

 The idea is to collect gradient magnitude and orientation
around each keypoint (widow 16*16). Then we figure out
the most prominent orientation(s) in that region. And we
assign this orientation(s) to the keypoint.

 This orientation provides rotation invariance

Step 5: Assign an orientation to the keypoints
146

 For each pixel in the widow around Keypoint compute
gradient magnitude and orientation using finite
differences:

Step 5: Assign an orientation to the keypoints
147

 The magnitude and orientation is calculated for all pixels
around the keypoint as following:
 Create a weighted direction histogram in a neighborhood of a

key point
 In this histogram, the 360 degrees of orientation are broken into

36 bins (each 10 degrees).
 Lets say the gradient direction at a certain point (in the "orientation

collection region") is 18.759 degrees, then it will go into the 10-19
degree bin. And the "amount/weight" that is added to the bin is
proportional to the magnitude of gradient at that point.
 In SIFT, you need to blur magnitude of gradient by an amount of

1.5*sigma.

 The size of the "orientation collection region" around the
keypoint depends on it's scale. The bigger the scale, the bigger
the collection region
 The window size, or the "orientation collection region", is equal to the

size of the kernel for Gaussian Blur of amount 1.5*sigma.

Step 5: Assign an orientation to the keypoints
148

 The histogram peaks at 20-29 degrees. So, the keypoint is assigned
orientation 3 (the third bin). And the “amount” that is added to the bin is
proportional to the magnitude of gradient at that point

 Also, any peaks above 80% of the highest peak are converted into a new
keypoint. This new keypoint has the same location and scale as the original.
But it’s orientation is equal to the other peak. So, orientation can split up
one keypoint into multiple keypoints.

Orientation assignment
149

Orientation assignment
150

Orientation assignment
151

Orientation assignment
152

Orientation assignment
153

Orientation Visualization

Making descriptor rotation invariant
154

 Rotate patch (window
around keypoint) according
to its dominant gradient
orientation to the
horizontal orientation
 The dominant orientation

will be horizontal orientation
 This puts the patches into a

canonical orientation.

 Make scaling according to
the arrow length
 Eliminate scaling problem

Step 6: Generate SIFT features
155

 Now we create a fingerprint for each keypoint. This is
to identify a keypoint.

 Each point so far has x, y, σ, m, θ

 Location x,y

 Scale: σ

 Gradient magnitude and orientation: m, θ

 Now we need a descriptor for the region

 Could sample intensities around point, but…

 Sensitive to lighting changes

 Sensitive to slight errors in x, y, θ

Step 6: Generate SIFT features
156

 The idea:
 We want to generate a very unique fingerprint for the keypoint.
 It should be easy to calculate.
 We also want it to be relatively lenient when it is being compared

against other keypoints.

 To do this, a 16x16 window around the keypoint. This 16x16
window is broken into sixteen 4x4 windows.

Step 6: Generate SIFT features
157

 Within each 4x4 window, gradient magnitudes and orientations are
calculated. These orientations are put into an 8 bin histogram.

 Any gradient orientation in the range 0-44 degrees add to the first bin.
45-89 add to the next bin. And so on.

 The amount added to the bin depends on the magnitude of the gradient.

 Unlike the past, the amount added also depends on the distance from
the keypoint. So gradients that are far away from the keypoint will add
smaller values to the histogram.

 This is done using a "gaussian weighting function". This function simply
generates a gradient (it's like a 2D bell curve). You multiple it with the
magnitude of orientations, and you get a weighted thingy. The farther
away, the lesser the magnutide.

Step 6: Generate SIFT features
158

 Doing this for all 16 pixels, you would've "compiled" 16
totally random orientations into 8 predetermined bins.
You do this for all sixteen 4x4 regions.

 So you end up with 4x4x8 = 128 numbers. Once you
have all 128 numbers, you normalize them (just like
you would normalize a vector in school, divide by root
of sum of squares). These 128 numbers form the
"feature vector".

 This keypoint is uniquely identified by this feature
vector.

Descriptor Regions (n by n)
159

SIFT Keypoint Descriptor Summery
160

 Descriptor: 128-D

 4 by 4 patches, each with 8-D gradient angle histogram:
4×4×8 = 128

 Normalized to reduce the effects of illumination change.

 Position: (x, y)

 Where the feature is located at.

 Scale

 Control the region size for descriptor extraction.

 Orientation

 To achieve rotation-invariant descriptor.

Effect of Noise on SIFT
161

Effect of Orientation on SIFT
162

Keypoints Matching
163

 Given a feature in I1, how to find the best match in I2?
1. Define distance function that compares two descriptors
2. Test all the features in I2, find the one with min distance

 How to define the difference between two features f1, f2?
 Simple approach is SSD(f1, f2)

 Sum of square differences between entries of the two descriptors
 Can give good scores to very ambiguous (bad) matches

Keypoints Matching
164

 How to define the difference between two features f1,
f2?
 Better approach: ratio distance = SSD(f1, f2) / SSD(f1, f2’)

 f2 is best SSD match to f1 in I2

 f2’ is 2nd best SSD match to f1 in I2

 gives small values for ambiguous matches

Keypoints Matching
165

 Suppose we use SSD

 Small values are possible matches but how small?

 Decision rule: Accept match if SSD < T, where T is a threshold

 What is the effect of choosing a particular T?

Keypoints Matching
166

 Distance Decision rule:
 Accept match if SSD < T

 Example: Large T, T = 250 ⇒
 a, b, c are all accepted as matches

 a and b are true matches (“true positives”) –they are actually matches

 c is a false match (“false positive”) –actually not a match

Keypoints Matching
167

 Decision rule:
 Accept match if SSD < T

 Example: Smaller T, T = 100 ⇒
 only a and b are accepted as matches

 a and b are true matches (“true positives”)

 c is no longer a “false positive”(it is a “true negative”)

Visualization of SIFT Key Matching using SSD
168

Other Keypoints Detectors and Descriptors
169

 Detectors

 PCA-SIFT

 SURF

 FAST

 ORB

 BRISK

 Descriptors

 SURF

 BREIF

 ORP

 BRISK

SIFT compared to other algorithms
170

Some Comparisons
171

 SIFT was the most stable one except for time whereas
SURF was the fastest with good results.

 The performance of the descriptor doesn’t depend on
the detector. Moreover, the SIFT descriptor was the
best one for different image transformations except
light changes.

 Binary descriptors are the best choice for time-
constrained applications with good matching accuracy

Color histogram

Color Moments

Color coherence vector

Color Features

Color Features
173

 The color feature is one of the most widely used visual
features in image retrieval.

 Images characterized by color features have many
advantages:
 Robustness. The color histogram is invariant to rotation of

the image on the view axis, and changes in small steps when
rotated otherwise or scaled

 Effectiveness. There is high percentage of relevance between
the query image and the extracted matching images.

 Implementation simplicity. The construction of the color
histogram is a straightforward process

 Computational simplicity. The histogram computation has
O(X, Y) complexity for images of size X × Y .

Color Features
174

 Color features are defined subject to a particular color
space or model.

 A number of color spaces have been used in literature,
such as RGB, HSV, etc.

 Once the color space is specified, color feature can be
extracted from images or regions.

 A number of important color features have been
proposed in the literatures, including:
 Color histogram

 Color moments(CM)

 Color coherence vector (CCV)

 Color correlogram, etc.

Color histogram
175

 A color histogram H for a given image is defined as a
vector H = {h[1], h[2], . . . h[i], . . . , h[N]}
 Where i represents a color in the color histogram,
 h[i] is the number of pixels in color i in that image,
 and N is the number of bins in the color histogram, i.e., the

number of colors in the adopted color model.

 In order to compare images of different sizes, color
histograms should be normalized.

 Can be used to Measures the similarity of
 images
 speech
 music

 Issue:
 how to capture perceptual similarity of an image

Color histogram
176

 The standard measure of similarity used for color
histograms:
 A color histogram H(i) is generated for each image h in the

database (feature vector),

 The histogram is normalized so that its sum equals unity
(removes the size of the image),

 The histogram is then stored in the database,

 Now suppose we select a model image (the new image to
match against all possible targets in the database).

Color histogram
177

 Histogram distance measures

Example for potential problem with histogram
distance
178

Distances of the three checkerboard images
179

Another Issue: loss of regional information
180

Color Moments
181

 Provide measurement for color similarity between images. These value
s of similarity can then be compared to the
values of images indexed in a database for tasks like image retrieval.

 The basis of color moments lays in the assumption that the distribution
of color in an image can be interpreted as a probability distribution.

 Probability distributions are characterized by a number of unique
moments (e.g. Normal distributions are differentiated by their mean
and variance).

 It therefore follows that if the color in an image follows a certain
probability distribution, the moments of that distribution can then
be used as features to identify that image based on color.

 The first order (mean), the second (variance) and the third order
(skewness) color moments have been proved to be efficient and
effective in representing color distributions of images.

Color Moments
182

Color Moments
183

Color Moments example
184

Color Coherence Vector
185

 Color's coherence is the degree to which pixels of that color
are members of large similarly-colored regions.

 The images Below have similar color histograms, despite
their different appearances.
 The color red appears in both images in approximately the same

quantities.

Color Coherence Vector
186

 Coherency measure classifies pixels as either coherent
or incoherent.

 Coherent pixels are a part of some sizable contiguous
region, while incoherent pixels are not.

 A color coherence vector represents this classification
for each color in the image.

 CCV's prevent coherent pixels in one image from
matching incoherent pixels in another.

 This allows fine distinctions that cannot be made with
color histograms.

Color Coherence Vector
187

 Computing CCV's

1. First blur the image. This eliminates small variations
between neighboring pixels.

2. Then discretize the color space, such that there are only n
distinct colors in the image.

3. Determine the pixel groups by computing connected
components.

 Each pixel will belong to exactly one connected component.

 We classify pixels as either coherent or incoherent depending on
the size in pixels of its connected component.

 A pixel is coherent if the size of its connected component
exceeds a fixed value T; otherwise, the pixel is incoherent.

Color Coherence Vector
188

 Computing CCV's

 For a given discretized color, some of the pixels with that
color will be coherent and some will be incoherent.

 Let us call the number of coherent pixels of the j'th
discretized color αj and the number of incoherent pixels βj.

 Clearly, the total number of pixels with that color is αj + βj,
for each color we compute the pair (αj + βj) which we will
call the coherence pair for the j'th color.

 The color coherence vector for the image consists of

 ((α1+ β2),……….., (αn + βn))

 This is a vector of coherence pairs, one for each discretized
color

Color Coherence Vector
189

 Comparing CCV's

 Consider two images I and I’, together with their CCV's GI
and GI’ :

Color Features Technique Summery
190

CCV: color coherence vector
DCD: dominant color descriptor
CSD: color structure descriptor
SCD: scalable color descriptor respectively

Shape Descriptor
Contour based

Region Based

Shape Matching

Shape Features

Shape features
192

 Shape is probably the most important property that is
perceived about objects. It allows to predict more facts about
an object than other features, e.g. color (Palmer 1999)

 Thus, recognizing shape is crucial for object recognition. In
some applications it may be the only feature present, e.g.
logo recognition

 Shape content description is difficult to define because
measuring the similarity between shapes is difficult.

 In order to extract object features, we need an image that
has undergone image segmentation and any necessary
morphological filtering.

 This will provide us with a clearly defined object which can
be labeled and processed independently.

Why Shape ?
193

These objects are recognized by…

Why Shape ?
194

These objects are recognized by…

Texture Color Shape

X X

X X

X

X

X

X

Shape feature categories of applications:
195

 Shape retrieval: searching for all shapes in a typically large
database of shapes that are similar to a query shape.
Usually all shapes within a given distance from the query
are determined or the first few shapes that have the
smallest distance.

 Shape recognition and classification: determining whether
a given shape matches a model sufficiently, or which of
representative class is the most similar.

 Shape alignment and registration: transforming or
translating one shape so that it best matches another
shape, in whole or in part.

 Shape approximation and simplification: constructing a
shape with fewer elements (points, segments, triangles,
etc.), so that it is still similar to the original.

Object Recognition by Shape
196

 Source: 2D image of a 3D
object

 Object Segmentation

 Contour Extraction

 Contour Cleaning

 Contour Segmentation

 Matching: Correspondence
of Visual Parts

Typical Issues
197

 Object segmentation and extraction

 How to describe object

 What is the matching techniques

 Occlusion

 Noise

Shape descriptor
198

 Shape descriptor is a set of numbers that are produced
to represent a given shape feature.

 A descriptor attempts to quantify the shape in ways
that agree with human intuition.

 Good retrieval accuracy requires a shape descriptor to
be able to effectively find perceptually similar shapes
from a database.

 Usually, the descriptors are in the form of a vector.

Shape descriptor
199

 Shape descriptors should meet the following
requirements:

 The descriptors should be as complete as possible to
represent the content of the information items.

 The descriptors should be represented and stored
compactly. The size of a descriptor vector must not be too
large.

 The computation of the similarity or the distance between
descriptors should be simple; otherwise the execution time
would be too long.

 Descriptors are invariant of variations of scale, rotation and
translation whenever possible

Shape features categories
200

 Shape descriptors can be divided into two main categories:

 Region-based methods use the whole area of an object for shape
description

 Contour-based methods use only the information present in the
contour of an object.

 Under each class, the different methods are further divided
into structural approaches and global approaches. This sub-
class is based on whether the shape is represented as a
whole or represented by segments/sections (primitives).

 These approaches can be further distinguished into space
domain and transform domain, based on whether the shape
features are derived from the spatial domain or from the
transformed domain.

Shape features categories
201

Shape features categories
202

Boundary Descriptors

 Chain Code

 Polygon Approximation

 Shape number

 Fourier descriptor

 Statistical Moments

Chain Codes

 Chain codes: represent an object boundary by a connected

sequence of straight line segments of specified length

and direction.

4-directional chain code 8-directional chain code

 Why we focus on a boundary?

The boundary is a good representation of an object shape

and also requires a few memory.

Examples of Chain Codes

Object
boundary

(resampling)

Boundary
vertices

4-directional
chain code

8-directional
chain code

Chain Codes
206

 Not scale invariant
 You can provide several chain codes of the same object at difference

“resolutions”

 Translation invariant
 Note that this is different than a chain of (x,y) coordinates

 We are encoding the boundary itself

 Codes are sensitive to noise
 If your boundary has some noise, this will show up in the chain code

 One solution
 Resample using a larger grid spacing
 Also provides a more compact representation

 Chain Code depends on the starting point
 We can normalize the chain code to address this problem

 Assume the chain is a circular sequence
 (given a chain of 1 to N codes ; N+1 = 1)
 Redefine the starting point such that we generate an integer of smallest

magnitude

The First Difference of a Chain Codes

 Chain code depends on orientation
 a rotation results in a different chain code
 One solution
 Use the “first difference” of the chain code instead of the

code itself
 The difference is obtained by simply counting (counter-

clockwise) the number of directions that separate two
adjacent elements

Example:

1

2

3

0

Example:

 - a chain code: 10103322

 - The first difference = 3133030

 - Treating a chain code as a

 circular sequence, we get

 the first difference = 33133030

Chain code : The first

 difference

 0 1 1

 0 2 2

 0 3 3

 2 3 1

 2 0 2

 2 1 3

The first difference is rotational

invariant.

Representation Polygonal Approximations

 Polygonal approximations: to represent a boundary by straight line
segments, and a closed path becomes a polygon.

 The number of straight line segments used determines the
accuracy of the approximation.

 Only the minimum required number of sides necessary to preserve
the needed shape information should be used (Minimum
perimeter polygons).

 A larger number of sides will only add noise to the model.

Representation Polygonal Approximations

 Minimum perimeter polygons: (Merging and splitting)

 Merging and splitting are often used together to ensure that
vertices appear where they would naturally in the boundary.

 A least squares criterion to a straight line is used to stop the
processing.

Shape Number

Shape number of the boundary definition:

the first difference of smallest magnitude

The order n of the shape number: the

number of digits in the sequence

1

2

3

0

Shape Number (cont.)

Shape numbers of order

4, 6 and 8

Example: Shape Number

Chain code:

0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

First difference:

3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape No.

0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1. Original boundary

2. Find the smallest rectangle

that fits the shape

3. Create grid
4. Find the nearest

Grid.

Fourier Descriptor

Fourier descriptor: view a coordinate (x,y) as a complex number

(x = real part and y = imaginary part) then apply the Fourier

transform to a sequence of boundary points.

)()()(kjykxks

1

0

/2)(
1

)(
K

k

Kukeks
K

ua

Fourier descriptor :

1

0

/2)(
1

)(
K

k

Kukeua
K

ks

Let s(k) be a coordinate of a boundary point k :

Reconstruction formula

Boundary

points

Example: Fourier Descriptor

Examples of reconstruction from Fourier descriptors

1

0

/2)(
1

)(ˆ
P

k

Kukeua
K

ks

P is the number of

Fourier coefficients

used to reconstruct

the boundary

Statistical Moments

1. Convert a boundary segment into 1D graph

2. View a 1D graph as a PDF function

3. Compute the nth order moment of the graph

1

0

)()()(
K

i

i

n

in rgmrr

Definition: the nth moment

where

1

0

)(
K

i

ii rgrm

Boundary

segment 1D graph

Example of moment:

The first moment = mean

The second moment = variance

Reginal Descriptors
216

 Some simple regional descriptors
 Area of the region

 Number of pixels in the region

 Perimeter
 Length of its boundary

 Compactness
 (perimeter2)/area

 Compactness is invariant to translation, rotation, and scale

 It is minimal for a disk-shaped region

 The previously mentioned regional descriptors are often
used with “blob” detection algorithms
 Especially “area” and compactness

 For example, consider that you are looking for circles with radius of
10 pixels

Reginal Descriptors
217

 Topological

 Texture

 Statistical

 Structural

 Spectral

Topological Descriptors

Euler number (E):

HCE

C = the number of connected

 components

H = the number of holes

• Topology = The study of the properties of a figure that are
unaffected by any deformation

• Use to describe holes and connected components of the
region

Topological Descriptors (cont.)

E = -1

E = 0

Euler Formula

EHCFQV

V = the number of vertices

Q = the number of edges

F = the number of faces E = -2

Example: Topological Descriptors

Original image:

Infrared image

Of Washington

D.C. area

After intensity

Thresholding

(1591 connected

components

with 39 holes)

Euler no. = 1552

The largest

connected

area

(8479 Pixels)

(Hudson river)

After thinning

Texture Descriptors

Purpose: to describe “texture” of the region.

Examples: optical microscope images:

Superconductor

(smooth texture)

Cholesterol

(coarse texture)

Microprocessor

(regular texture)

A

B C

Regional Descriptors Texture

 Texture is usually defined as the smoothness or roughness of a
surface.

 In computer vision, it is the visual appearance of the
uniformity or lack of uniformity of brightness and color.

 There are two types of texture: random and regular.
 Random texture cannot be exactly described by words or

equations; it must be described statistically. The surface of
a pile of dirt or rocks of many sizes would be random.

 Regular texture can be described by words or equations or
repeating pattern primitives. Clothes are frequently made
with regularly repeating patterns.

 Random texture is analyzed by statistical methods.
 Regular texture is analyzed by structural or spectral (Fourier)

methods.

Texture descriptions
223

 Three main approaches:

1. Statistical: moments, co-occurrence matrix

2. Structural, viewing a texture as an arrangement of
texture primitives

3. Spectral, using the Fourier transform to detect global
periodicities

Statistical Descriptors - Moments

 Let z be a random variable denoting gray levels and let p(zi),
i=0,1,…,L-1, be the corresponding histogram, where L is the number
of distinct gray levels.

 The nth moment of z:

 The measure R:

 The uniformity:

 The average entropy:

1

0

)(where
L

i

ii zpzm

)(log)(2

1

0

i

L

i

i zpzpe

)(1

1
1

2 z
R

1

0

2)(
L

i

izpU

1

0

)()()(
L

k

i

n

in zpmzz

Example: The 2nd moment = variance measure “smoothness”

 The 3rd moment measure “skewness”

 The 4th moment measure “uniformity” (flatness)

Statistical Descriptors - Moments

Smooth Coarse Regular

Statistical Descriptors - co-occurrence matrix
226

 Statistically sampling the way certain grey-levels occur in
relation to other grey-levels.

 For a position operator p, we can define a matrix Pij that counts
the number of times a pixel with grey-level I occurs at position p
from a pixel with grey-level j.

 For example, if we have three distinct grey-levels 0, 1, and 2,
and the position operator p is “lower right”, the counts matrix P
of the image

 If we normalize the matrix P by the total number of pixels so
that each element is between 0 and 1, we get a grey-level co-
occurrence matrix C.

Co-Occurrence Matrices

 For a given co-occurrence matrix P(a, b), we can compute
the following six important characteristics:

 You should compute these six characteristics for multiple
displacement vectors, including different directions.

ba

baP
,

2),(Energy

ba

baPbaP
,

2),(log),(Entropy

),(maxyprobabilit Maximum
,

baP
ba

ba

baPba
,

1 2,usually ,),(||Contrast

Co-Occurrence Matrices

baba ba

baP

;, ||

),(
moment difference Inverse

yx

ba

yxbaPab

,

),()(

nCorrelatio

ba

x baPa),(

ab

y baPb),(

ba

xx baPa),()(2

ab

yy baPb),()(2

Structural Approaches

 Structural concepts:

 Define a grammar for the way that the
pattern of the texture produces
structure.

 Suppose that we have a rule of the form
S→aS, which indicates that the symbol S
may be rewritten as aS.

 If a represents a circle and the meaning
of “circle to the right” is assigned to a
string of the form aaaa…

Spectral Approaches

 For non-random primitive spatial patterns, the 2-
dimensional Fourier transform allows the patterns to be
analyzed in terms of spatial frequency components and
direction.

 It may be more useful to express the spectrum in terms of
polar coordinates, which directly give direction as well as
frequency.

 Let is the spectrum function, and r and are the
variables in this coordinate system.

 For each direction , may be considered a 1-D
function .

 For each frequency r, is a 1-D function.

 A global description:

0

)()(rSrS

),(rS

0

1

)()(
R

r

rSS

),(rS

)(rS

)(rS

Divide into areas

by angles

Fourier Approach for Texture Descriptor

Original

image

Fourier

coefficient

image

FFT2D

+FFTSHIFT

Sum all pixels

in each area

Divide into areas

by radius

Sum all pixels

in each area

0

)()(rSrS

0

1

)()(
R

r

rSS

Concept: convert 2D spectrum into 1D graphs

Fourier Approach for Texture Descriptor

Original

image
2D Spectrum

(Fourier Tr.)

S(r) S()

Another

image
Another S()

Moments of Two-D Functions

x y

qp

pq yxfyxm),(

00

10

m

m
x

00

01

m

m
y

x y

qp

pq yxfyyxx),()()(

0000 m 01001

1011011111 mymmxm

102020 mxm 010202 mym

01

2

20112121 22 mxmymxm

10

2

02111212 22 mymxmym

10

2

203030 23 mxmxm

01

2

020303 23 mymym

The moment of order p + q

The central moments of order p + q

Invariant Moments of Two-D Functions

00

pq

pq where 1
2

qp

The normalized central moments of order p + q

Invariant moments: independent of rotation, translation, scaling,

 and reflection

02201 2

11

2

02202 4

 20321

2

12303 33 20321

2

12304

 2

0321

2

123003210321

2

0321

2

1230123012305

33

33

 0321123011

2

0321

2

123002206

4

Example: Invariant Moments of Two-D Functions

1. Original image 2. Half size 3. Mirrored

4. Rotated 2 degree 5. Rotated 45 degree

Invariant moments of images in the previous slide

Example: Invariant Moments of Two-D Functions

 Invariant moments are independent of rotation, translation,

scaling, and reflection

Shape features categories Comparison
237

 Contour-based approaches are more popular than
region-based approaches in literature.

 Human beings are thought to discriminate shapes mainly
by their contour features.

 However, there are several limitations with contour-
based methods.

 contour shape descriptors are generally sensitive to noise
and variations because they only use a small part of shape
information

 In many cases, the shape contour is not available.

 In some applications, shape content is more important
than the contour features.

Shape features categories Comparison
238

 Region-base methods are more robust as they use all
the shape information available; they can be applied to
general applications; and

 they generally provide more accurate retrieval. In addition,

 region-based methods can cope well with shape defection,
which is a common problem for contour-based shape
representation techniques.

 Although region-based methods make use of all the
shape information, it is not necessarily more complex
than contour-based methods

Shape features categories Performance
239

Shape features categories Performance
240

Shape features categories Performance
241

Shape Descriptor
Contour based

Region Based

Shape Matching

Shape Features

Shape-Based Recognition
243

 High-level feature extraction concerns in finding shapes
in computer images.

 Humans can recognize many objects based on shape
alone

 Fundamental cue for many object categories

 Invariant to photometric variation.

Similar to a human in terms of shape, but very different
in terms of pixel values.

kinds of problems addressed by shape matching
244

 Computation problems: compute the similarity between two
patterns.

 Decision problems: given a threshold, decide if the
similarity/dissimilarity is larger/smaller than the threshold.

 Decision problem: given a threshold, decide if there is a
transformation after which the dissimilarity between the
transformed shape and the other shape is less than the
threshold.

 Optimization problem: find the transformation that minimizes
the dissimilarity between the transformed shape and the other
shape.

 Approximate optimization problem: Often, the complexities of
solving the above problems are extremely high. For such a case,
an approximation algorithm finds a transformation that permits
a dissimilarity between the two shapes that is within a constant
factor from the minimum dissimilarity.

Applications
245

 Shape retrieval: search for shapes in a large database
that are similar to a query shape

 Shape recognition and classification: determine if a
given shape is sufficiently similar to another shape, or
find the most similar shape from a set of shapes.

 Shape alignment and registration: transform one
shape to find the best matching to a second shape.

 Shape approximation and simplification: create a
shape that is less complex (with fewer vertices,
triangles, etc.), but still similar to the original shape.

Types of matching

 Direct use of pixel

 Correlation

 Use low-level features

 Edges or corners

 High-level matchers

 Use identified parts of objects

 Relations between features.

Shape Matching Approaches
247

 Distance based – Binary images

 Hausdorff Distance

 Shape Context

 Correlation Based – Gray level images

 Hierarchical Approach

 Hierarchical Matching

 Machine Learning Approach

 Boundary Fragment Model

Hausdorff Distance
248

 Use Hausdorff distance to compare images to a model

 Fast and simple approach

 Tolerant of small position errors

 Model is only allowed to translate with respect to the
image

 Can be extended to allow rotation and scale

Hausdorff Distance
249

 A means of determining the resemblance of one point
set to another

 Examines the fraction of points in one set that lie near
points in the other set

 Intuitively, the function h(P,Q) finds the point p from P
that is farthest from any point in Q and measures the
distance from p to its nearest neighbor in Q.

Hausdorff Distance - Example
250

Given two sets of points
A and B, find h(A,B)

Hausdorff Distance - Example
251

Compute the distance between a1 and each bj

Hausdorff Distance - Example
252

Keep the shortest

Hausdorff Distance - Example
253

Do the same for a2

Hausdorff Distance - Example
254

Find the largest of these two distances

Hausdorff Distance - Example
255

This is h(A,B)

Hausdorff Distance - Example
256

This is h(B,A)

Hausdorff Distance - Example
257

H(A,B) = max(h(A,B),h(B,A))

Hausdorff Distance - Example
258

This is H(A,B)

Hausdorff Distance
259

Hausdorff Distance- Example Matching
260

Hausdorff Distance- Example Matching
261

Comparing Binary Feature Maps
262

 Binary “image” specifying feature locations

 In x,y or x,y,scale

 Even small variations will cause maps not to align
precisely

 Distance transforms a natural way to “blur” feature
locations geometrically

 Natural generalization also applies not just to binary
data but to any cost or height map

Distance Transform
263

 The distance transform is an operator normally only applied to
binary images.

 Distance Transform is a function that for each image pixel p
assigns a non-negative number corresponding to distance from
p to the nearest feature in the image I

 The result of the transform is a graylevel image that looks
similar to the input image, except that the graylevel intensities
of points inside foreground regions are changed to show the
distance to the closest boundary from each point.

3
4

2
3

2
3

5 4 4

2
2
3

1
1
2

2 1 1 2 1
1 0 0 1 2 1

0
0
0
1

2 3 2 1 0 1
1 0 1 2 3 3 2

1
0
1
1
1
0 1

2

1 0 1 2 3 4 3 2
1
0
1
2
2

Distance Transform Image features (2D)

Uses of Distance Transforms
264

 Image matching and object recognition

 – Hausdorff and Chamfer matching

 – Skeletonization

original distance transform edges

Value at (x,y) tells how far

that position is from the

nearest edge point

Shape Matching by Shape Contexts
265

 The shape context is intended to be a way of describing
shapes that allows for measuring shape similarity and
the recovering of point correspondences

 Shape contexts for shape matching steps:

 Randomly select a set of points that lie on the edges of a
known shape and another set of points on an unknown
shape.

 Compute the shape context of each point found in step 1.

 Match each point from the known shape to a point on an
unknown shape.

 Calculate the "shape distance" between each pair of points
on the two shapes.

Shape Matching by Shape Contexts
266

 Step 1: Finding a list of points on shape edges

 The approach assumes that the shape of an object is
essentially captured by a finite subset of the points on the
internal or external contours on the object.

 These can be simply obtained using the Canny edge
detector and picking a random set of points from the
edges.

 Note that these points need not and in general do not
correspond to key-points such as maxima of curvature or
inflection points.

 It is preferable to sample the shape with roughly uniform
spacing, though it is not critical

Shape Matching by Shape Contexts
267

 Step 2: Computing the shape context

 The basic idea

 Pick n points on the contours of a shape.

 For each point pi on the shape, consider the n − 1 vectors
obtained by connecting pi to all other points. The set of all these
vectors is a rich description of the shape localized at that point
but is far too detailed. The key idea is that the distribution over
relative positions is a robust, compact, and highly discriminative
descriptor.

 The point pi, the coarse histogram of the relative coordinates of
the remaining n − 1 points, is defined to be the shape context
of pi.

 The bins are normally taken to be uniform in log-polar space.

Shape Matching by Shape Contexts
268

Step 2: Computing the shape context

Shape Matching by Shape Contexts
269

 Step 3: Computing the cost matrix

 Consider two points p and q that have normalized K-bin
histograms (i.e. shape contexts) g(k) and h(k). As shape
contexts are distributions represented as histograms, it is
natural to use the χ2 test statistic as the "shape context
cost" of matching the two points:

 The values of this range from 0 to 1

Shape Matching by Shape Contexts
270

 Step 3: Computing the cost matrix

 In addition to the shape context cost, an extra cost based
on the appearance can be added. For instance, it could be
a measure of tangent angle dissimilarity (particularly useful
in digit recognition):

 Its values also range from 0 to 1

Shape Matching by Shape Contexts
271

 Step 3: Computing the cost matrix

 Now the total cost of matching the two points could be a
weighted-sum of the two costs:

 Now for each point pi on the first shape and a point qj on
the second shape, calculate the cost as described and call
it Ci,j. This is the cost matrix.

Shape Matching by Shape Contexts
272

 Step 4: Finding the matching that minimizes total cost

 Now, a one-to-one matching pi that matches each
point pi on shape 1 and qj on shape 2 that minimizes the
total cost of matching is needed

 This can be done in O(N3) time using the Hungarian
method, although there are more efficient algorithms

https://en.wikipedia.org/wiki/Hungarian_method
https://en.wikipedia.org/wiki/Hungarian_method

Shape Matching by Shape Contexts
273

 (a,b) Original image pair.
 (c) Edges and tangents of first

letter with 50 sample points.
 (d) Vectors from a sample

point (at left, middle) to all
other points.

 (d) histogram of vectors with
5 and 6 bins, respectively.
(Dark=large value.)

 (f) Correspondences found
using Hungarian method,
with weights given by sum of
two terms: histogram
dissimilarity and tangent
angle dissimilarity.

Application: Digit Recognition

Training set
size:
20,000

Test set
size:
10,000

Error:
0.63%

Application: Breaking CAPTCHA

space

sock

92% success rate
on

EZ-Gimpy

Application: Trademark Retrieval

 Can be used to find
different shapes
with similar
elements.

 Useful to
determine cases of
trademark
infringement.

Shape Matching by Shape Contexts – Invariance
277

 Translational invariance come naturally to shape context.

 Scale invariance is obtained by normalizing all radial
distances by the mean distance between all the point pairs
in the shape although the median distance can also be
used.

 Shape contexts are empirically demonstrated to be robust
to deformations, noise, and outliers using synthetic point
set matching experiments.

 One can provide complete rotation invariance in shape
contexts. One way is to measure angles at each point
relative to the direction of the tangent at that point (since
the points are chosen on edges).

Other Method for Shape Matching
278

 Matching Images/Video Using Local Self-Similarities

 The Pyramid Match Kernel

 Hierarchical Matching of Deformable Shapes

 A Boundary-Fragment-Model for Object Detection

Features Post Processing
279

 Number and types of features have a direct effect
on the performance of classification and
clustering techniques besides the model
efficiency in time and memory

 Two Approaches for analyzing features the
 Dimensionality Reduction

 Feature Selection

