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Element of Image Analysis  
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Preprocess 
Image Acquisition, Enhancement, and Restoration 

Intermediate process 
Feature extraction & Image segmentation 

High level process 
Image interpretation and recognition 



Features Extraction 
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 Feature = “point of interest” for image description 

 Features should contain information required to distinguish 
between classes  

 Should be insensitive to irrelevant variability in the input 

 

 Main goal of feature extraction 

 Obtain the most relevant information from the original 
data  

 Represent that information in a lower dimensionality 
space. 



Features Extraction 
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 Feature extraction is a special form of dimensionality 
reduction 
 When the input data is too large to be processed and it is 

suspected to be redundant (much data, but not much 
information) then the input data will be transformed into a 
reduced representation set of features (also named features 
vector).  

 Used by classifiers to recognize the input unit  

 Used in many applications such as  
 Character recognition 

 Reading bank deposit slips 

 data entry 

 Image retrieval 

 ……. 



Features Extraction Classification 
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 Features can be classified as: 

General features:  
 Application independent features such as color, texture, and 

shape.  

 According to the abstraction level, they can be further divided 
into: 

 Pixel-level features: Features calculated at each pixel, e.g. 
color, location. 

 Local features: Features calculated over the results of 
subdivision of the image band on image segmentation or 
edge detection. 

Global features: Features calculated over the entire image 
or just regular sub-area of an image. 



Features Extraction Classification 
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 Features can be classified as: 

 Domain-specific features:  

 Application dependent features: such as human faces, 
fingerprints, Characters, and conceptual features.  

 These features are often a synthesis of low-level features 
for a specific domain. 

 



Features Extraction Classification 
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 On the other hand, all features can be coarsely 
classified into: 
 Low-level features: features can be extracted directed 

from the original images 

 Edges 

 Corners 

 Interest points 

 High-level features: high-level feature extraction must be 
based on low level features  

 Shape 

 Template Matching 

 



Characteristics of good features 
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 Identifiability: shapes which are found perceptually 
similar by human have the same feature different from 
the others. 
 

 Repeatability: The same feature can be found in several 
images despite geometric (Translation, rotation and 
scale invariance) and photometric (Intensity) 
transformations  
 

 Noise resistance: features must be as robust as possible 
against noise, i.e., they must be the same whichever be 
the strength of the noise in a give range that affects the 
pattern. 

 



Efficiency of features 
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 Occultation invariance: when some parts of a shape are 
occulted by other objects, the feature of the remaining 
part must not change compared to the original shape. 
 

 Statistically independent: two features must be 
statistically independent. This represents compactness of 
the representation. 
 

 Reliable: as long as one deals with the same pattern, the 
extracted features must remain the same. 

 



What is best method for feature extraction 
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 It all depends on your application at hand. Few things 
you should keep in mind are: 

 Feature extraction is highly subjective in nature 

 There is no generic feature extraction scheme which 
works in all cases.  
What kind of problem are you trying to solve? e.g.   

classification, regression, clustering, etc. 

Do you have a lot of data? 

Do your data have very high dimensionality? 

 Is your data labelled? 

Do you want to use a very computationally intensive method or 
something rather inexpensive? 

 



Image Features 
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 Image Main Features: 
 Local Features 

 Color Features 

 Shape Features  



Local Features – Motivation  
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 Panorama stitching 

 We have two images – how do we combine them? 

 

 



Local Features – Motivation  
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 Panorama stitching 

 We have two images – how do we combine them? 

 

 

Extract and match features 



Why extract features? 
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 Panorama stitching 

 We have two images – how do we combine them? 

 

 

Align images 



Local Features 
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 Features that can be extracted automatically from an 
image without any shape information (information 
about spatial relationships) 

 Can be used in high-level feature extraction, where we 
find shapes in Images. 

 Types 

 Edge 

 Corner 

 Interest points 



Local Features extraction: main components 
17 

1. Detection: Identify the 
interest points 
 
 
 

2. Description :Extract feature 
vector descriptor surrounding 
each interest point. 
 
 

3. Matching: Determine 
correspondence between 
descriptors in two views 
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Local Features - Edge 
19 



Edge Detection 
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 It is not unusual to find the three types of edges in one image 



Edge Detection 
21 

Original image 

Edge 



Edge Detection 
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Gray level profile 

The 1st derivative 
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The 2nd derivative 

Therefore, for detecting edges, we can apply zero crossing detection  to the 2nd derivative 
image or thresholding the absolute of the 1st derivative image 



Edge Detection Using Gradient 
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Edge Detection Using Gradient 
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Edge Detection Using Gradient 
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Edge Detection Using Gradient 
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Edge Detection Using Gradient 
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Edge Detection Using Gradient 
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Edge Detection Using Gradient 
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Edge Detection Using Gradient 
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Edge Detection Using Gradient 
31 



Effects of noise 

 Consider a single row or column of the image 
 Plotting intensity as a function of position gives a signal 

Where is the edge? 



Edge Detection with Noise 
33 



Solution:  smooth first 

Where is the edge?  Look for peaks in  



Derivative theorem of convolution 

This saves us one operation: 



Laplacian of Gaussian 

 Look for zero-crossings of   

Laplacian of Gaussian 

operator 



2D edge detection filters 

 is the Laplacian operator: 

Laplacian of Gaussian Gaussian derivative of Gaussian 



Quality of an Edge 
38 



Advanced Edge Detection Method - Canny Edge Detector 
 39 

 The Canny algorithm has three goals: 

Good Detection: The optimal detector must minimize 
the probability of false positives as well as false 
negatives.  

Good Localization: The edges detected must be as 
close as possible to the true edges.  

 Single Response Constraint: The detector must return 
one point only for each edge point.  

 

 



Canny Algorithm 
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 The Process of Canny edge detection algorithm can be 
broken down to 5 different steps: 

1. Apply Gaussian filter to smooth the image in order to 
remove the noise 

2. Find the intensity gradients of the image 

3. Apply non-maximum suppression to get rid of spurious 
response to edge detection 

4. Apply double threshold to determine potential edges 

5. Track edge by hysteresis: Finalize the detection of edges 
by suppressing all the other edges that are weak and not 
connected to strong edges. 

 



Canny Algorithm – Step 1 
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 Since edge detection is susceptible to noise in the 
image, first step is to remove the noise in the image 
with a 5x5 Gaussian smoothing filter. 

 



Canny Algorithm – Step 2 
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 The second step is to use Sobel masks to find the edge 
gradient strength and direction for each pixel. 

 The magnitude, or edge strength, of the gradient is then 
approximated using the formula:  |G| = |Gx| + |Gy| 

 

 

 

 The direction of the edge is computed using the gradient in 
the x and y directions 

 )/(tan],[ 1 GxGyji 



Canny Algorithm – Step 3 
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 Gradient Orientation 
 Reduce angle of Gradient θ[i,j] to one of the 4 sectors 

 Check the 3x3 region of each M[i,j] 

 Any edge direction falling within the yellow range (0 to 22.5 & 
157.5 to 180 degrees) is set to 0 degrees. Any edge direction falling 
in the green range (22.5 to 67.5 degrees) is set to 45 degrees. Any 
edge direction falling in the blue range (67.5 to 112.5 degrees) is 
set to 90 degrees. And finally, any edge direction falling within the 
red range (112.5 to 157.5 degrees) is set to 135 degrees. 



Canny Algorithm – Step 4 
44 

 The edge extracted from the gradient value is still quite 
blurred. 

 Non-maximum suppression can help to suppress all the 
gradient values to 0 except the local maximal, which 
indicates location with the sharpest change of intensity 
value.  

 The algorithm for each pixel in the gradient image is: 
 Compare the edge strength of the current pixel with the edge 

strength of the pixel in the positive and negative gradient 
directions. 

 If the edge strength of the current pixel is the largest compared 
to the other pixels in the mask with the same direction (i.e., the 
pixel that is pointing in the y direction, it will be compared to 
the pixel above and below it in the vertical axis), the value will 
be preserved. Otherwise, the value will be suppressed. 

 



Canny Algorithm – Step 4 
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 Non-maximum Suppression 
 For each pixel (i,j): 
 Find the direction dk, which best approximates the direction 

 Check the 3x3 region of each M[i,j] 

 If M[i,j] is smaller than at least one of its two neighbors along dk, 
assign I[i,j]=0; otherwise assign I[i,j]=M[i,j] 
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Canny Algorithm – Step 4 
46 



Canny Algorithm – Step 5 
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 Hysteresis Thresholding 
 The image output by NONMAX- SUPPRESSION I[i,j] still 

contains the local maxima created by noise. How do we get 
rid of these? 

 Reduce number of false edges by applying a threshold T 

 All values below T are changed to 0 

 Selecting a good values for T is difficult 

 Some false edges will remain if T is too low 

 Some edges will disappear if T is too high 

 Some edges will disappear due to softening of the edge contrast 
by shadows 

 

 



Canny Algorithm – Step 5 
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 Hysteresis Thresholding 
 Double Thresholding 
 Two threshold values, TL and TH are applied to I[i,j].  
 Here TL < TH  

 Two images in the output 

 The image from TL contains fewer edges but has gaps in the 
contours  

 The image from TL has many false edges 

 Combine the results from TL and TH 

 Link the edges of TH into contours until we reach a gap 

 link the edge from TH with edge pixels from a TL contour until a 
TH edge is found again 

 



Canny Algorithm – Step 5 
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 Hysteresis Thresholding 
 

 

 

 

 

 

 

 

 

 

 
 

 A TH contour has pixels along the green arrows  

 Linking: search in a 3x3 of each pixel and connect the  

 pixel at the center with the one having greater value  

 Search in the direction of the edge (direction of Gradient) 
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Canny Algorithm – Step 5 
50 

 Hysteresis Thresholding 



Canny Algorithm 
51 

 

 Stages in Canny edge detection - Example 



Canny Edge Detection 
52 



Canny Edge Detection Summery 
53 

 The performance of the Canny algorithm depends heavily 
on the adjustable parameters, , which is δ and the 
threshold values, ‘T1’ and ‘T2’.  
 The bigger the value for δ, the larger the size of the Gaussian 

filter becomes. This implies more blurring, necessary for noisy 
images, as well as detecting larger edges.  

 However, the larger the scale of the Gaussian, the less accurate 
is the localization of the edge.  

 The user can tailor the algorithm by adjusting these parameters 
to adapt to different environments.  

 Canny’s edge detection algorithm is computationally more 
expensive compared to Sobel, Prewitt and Robert’s operator. 
However, the Canny’s edge detection algorithm performs better 
than all these operators under almost all scenarios 



Edge Detection Summery 
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 Since edge detection is the initial step in object 
recognition, it is important to know the differences 
between edge detection techniques. 

 Gradient-based algorithms such as the Prewitt filter have a 
major drawback of being very sensitive to noise. 

 The size of the kernel filter and coefficients are fixed and cannot 
be adapted to a given image.  

 An adaptive edge-detection algorithm is necessary to provide a 
robust solution that is adaptable to the varying noise levels of 
these images to help distinguish valid image contents from 
visual artifacts introduced by noise. 



Edge Detection Summery 
55 

Original 

Roberts 

Sobel 

Prewitt 



Edge Detection Summery 
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Sobel Roberts 

Original Canny 



Edge Detection Summery 
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(a) Original 
Image with 
Noise  

(b) Sobel 
(c) Robert 
(d) Canny 



Edge Detection Summery 
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 SOFT COMPUTING APPROACHES 

 Fuzzy based Approach 

 Genetic Algorithm Approach 

 Neural Network Approach 

 

 Soft computing approaches, are applied on a real 
life example image of nature scene 



Edge Detection Summery 
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Original Roberts Sobel 

Fuzzy Genetics Neural Network 



Edge Linking and Boundary Detection 
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Local Edge Linking 
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Local Edge Linking 
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Local Edge Linking 
63 



Global Edge Linking and Hough Transform 
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Hough Transform 
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Hough Transform 
66 



Hough Transform 
67 



Hough Transform 
68 



Hough Transform 
69 

 Example: We want to segment the two edges of the 
principle runway 



Are Edge Invariant to Transformations? 
70 

 Invariance: 
 We want features to be detected despite geometric or 

photometric changes in the image: if we have two transformed 
versions of the same image, features should be detected in 
corresponding locations 

 Models of Image Change - Transformation 
 Geometry 

 Rotation 

 Similarity (rotation + uniform scale) 
 

 Affine (scale dependent on direction) 
valid for: orthographic camera, locally planar object 

 Photometry 

 Affine intensity change (I  a I + b) 



Are Edges Invariant to Transformations? 
71 

 Edges are usually defined as sets of points in the image 
which have a strong gradient magnitude 

 Edges can be invariant to brightness changes but typically 
not invariant to other transformations 

 

https://en.wikipedia.org/wiki/Gradient


Edge  

Texture Features  
Corner 

Interest Points 

Local Features 



Texture Features: What´s in the image? 
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 Texture is a tactile or visual characteristic of a surface. 

 In general, color is usually a pixel property while 
texture can only be measured from a group of pixels. 

 Aim: Texture gives us information about the spatial 
arrangement of the colors or intensities in an image. 

 

 To find a unique way of representing the underlying 
characteristics of textures and represent them in some 
simpler but unique form, so then they can be used to 
accurately and robustly classify and segment objects. 



Texture Features 
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 Basically, texture representation methods can be 
classified into two categories: 

 Structural approach: Texture is a set of primitive texels in 
some regular or repeated relationship. 

 Texel: A small geometric pattern that is repeated frequently on 
some surface resulting in a texture. 

 Work well for man-made and regular patterns 

 Statistical approach: Texture is a quantitative measure of 
the arrangement of intensities in a region.  

 More general and easier to compute and is used more often in 
practice. 



Structural approach 
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 Structural approaches model texture as a set of texture 
primitives (also called texels (texture elements)) in a 
particular spatial relationship (also called lattice or grid 
layout). 

  A structural description of a texture includes a 
description of the primitives and a specification of their 
placement patterns. 

 The primitives must be identifiable and their 
relationships must be efficiently computable. 



Structural approach 
76 



Statistical approach 
77 

 Usually, segmenting out the texels is difficult or even 
impossible in real images. 

 Instead, numeric quantities or statistics that describe a 
texture can be computed from the gray tones or colors 
themselves. 

 Statistical methods analyze the spatial distribution of gray 
values, by computing local features at each point in the 
image, and deriving a set of statistics from the distributions 
of the local features. 

 This approach can be less intuitive, but is computationally 
efficient and often works well. 

 



Statistical approach 
78 

 Depending on the number of pixels defining the local 
feature statistical methods can be further classified into  
 First-order (one pixel) 

 Second-order (two pixels) 

 Higher-order (three or more pixels) statistics. 

 

 The basic difference is that: 
 First-order statistics estimate properties (e.g. average and 

variance) of individual pixel values, ignoring the spatial 
interaction between image pixels,  

 Second- and higher-order statistics estimate properties of two 
or more pixel values occurring at specific locations relative to 
each other.  



Some Statistical Approachs 
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 Some statistical approaches for texture: 
 Corner Detection 

 Co- occurrence matrices 

 Local binary patterns 

 Statistical moments 

 Autocorrelation 

 Markov random fields 

 Autoregressive models 

 Mathematical morphology 

 Interest points – SIFT, SURF… 

 Fourier power spectrum 

 Gabor filters 



Texture Features - Corner  
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 A corner can be defined as the intersection of two 
edges.  

 Can also be defined as a point for which there are two 
dominant and different edge directions in a local 
neighborhood of the point. 

 Corner detection is frequently used in motion 
detection, image registration, video tracking, image 
matching, and object recognition. 

 Edge detection that can be used with post-processing 
to detect corners 
 Kirsch operator  

 Frei-Chen masking set. 



Corner Detection 
81 

 Several proposed approaches for corner detection:  
 Moravec corner detection algorithm 

 The Harris & Stephens corner detection algorithms 

 The level curve curvature approach 

 Laplacian of Gaussian, differences of Gaussians and determinant 
of the Hessian scale-space interest points 

 The Wang and Brady corner detection algorithm 

 The SUSAN corner detector 

 …… 

 One determination of the quality of a corner detector is its 
ability to detect the same corner in multiple similar images, 
under conditions of different lighting, translation, rotation, 
Scaling, and other transforms. 



Finding Corners 
82 

 Key property: in the region around a corner, image gradient has 
two or more dominant directions 
 Idea:  

 Exactly at a corner, gradient is ill defined.  
 However, in the region around a corner, gradient has two or more 

different values. 

 Corners are repeatable and distinctive. 
 Edge detectors perform poorly at corners 



Harris Detector - The Basic Idea 
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 We should easily recognize the point by looking through a small window 

 Shifting a window in any direction should give a large change in 
intensity 

“flat” region: 

no change in 

all directions 

“edge”: 

no change along 

the edge direction 

“corner”: 

significant change 

in all directions 

Find locations such that the minimum change caused by 
shifting the window in any direction is large  



Harris Detector - The Basic Idea 
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 Consider shifting the window W by (u,v) 

 How do the pixels in W change? 

 Compare each pixel before and after using the sum of 
squared differences (SSD) 

 This defines an SSD “error”E(u,v): 

 



Sum of Squared Differences (SSD) Profile  
85 



Harris Detector: Step 1 - Compute the Gradient 

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

 Change of intensity for the shift [u,v]: 

Intensity Shifted 
intensity 

Window 
function 

or Window function w(x,y) = 

Gaussian 1 in window, 0 outside 



Taylor Series Representation 
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Taylor series is a representation of a function as an 
infinite sum of terms that are calculated from the 
values of the function's derivatives at a single point. 



Harris Detector: Step 1 - Compute the Gradient  

 Small motion assumption 



Harris Detector: Step 1 - Compute the Gradient 
89 



Harris Detector: Step 2 - Compute the Eigenvalues 
90 

 This can be rewritten: 

 

 

 

 

 

 

 For the example above: 
 You can move the center of the green window to anywhere on 

the blue unit circle 

 How do we find directions that will result in the largest and 
smallest E values? 

 Find these directions by looking at the eigenvectors of  M 

M 



Harris Detector: Step 2 - Compute the Eigenvalues 
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 Interpreting the second moment matrix 

 First, consider the axis-aligned case (gradients are either 
horizontal or vertical) 

 

 

 

 

 If either λ is close to 0, then this is not a corner, so look for 
locations where both are large. 

 If there are two large eigenvalues there is a corner; and if 
one an edge 



Harris Detector: Step 2 - Compute the Eigenvalues 
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Harris Detector: Step 2 - Compute the Eigenvalues 

 Intensity change in shifting window: eigenvalue analysis 

 

 

 Since M is symmetric, we have 

 We can visualize Mas an ellipse with axis lengths determined 
by the eigenvalues and orientation determined by R 

 ( , ) ,
u

E u v u v M
v

 
  

 
1, 2 eigenvalues of M 

direction of the 

slowest change 

direction of the 
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(max)
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(min)
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Ellipse E(u,v) = const 



Harris Detector: Step 3 Classification  of Eigenvalues  

1 

2 

“Corner” 
1 and 2 are large, 

 1 ~ 2; 

E increases in all 

directions 

1 and 2 are small; 

E is almost constant 

in all directions 

“Edge”  
1 >> 2 

“Edge”  
2 >> 1 

“Flat” 
region 

Classification of 
image points using 
eigenvalues of M: 



Harris Detector: Step 4 Measure Corner Response 

 Measure of corner response: 

 
2

det traceR M k M 

1 2

1 2

det

trace

M

M

 

 



 

(k – empirical constant, k = 0.04-0.06) 



Harris Detector: Step 4 Measure Corner Response 

1 

2 

“Corner” 

“Edge”  

“Edge”  

“Flat” 

  R depends only on 
eigenvalues of M 

  R is large for a corner 

  R is negative with 
large magnitude for an 
edge 

  |R| is small for a flat 
region 

R > 0 

R < 0 

R < 0 |R| small 



Harris Detector: Workflow 



Harris Detector: Compute corner response R 
 



Harris Detector: Find points with large corner 

response: R>threshold 
 



Harris Detector: Take only the points of local 

maxima of R 
 



Harris Detector: Workflow 



Harris Detector: Summary 

 Compute Gaussian derivatives at each pixel 

 Compute second moment matrix Min a Gaussian 
window around each pixel  

 Compute corner response function R 

 Threshold R 

 Find local maxima of response function (nonmaximum 
suppression) 
 
 



Harris Detector: Summary 
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Other Version of Harris Detectors 
104 



Are Corners Invariant to Transformations? 
105 

 Invariance: 
 We want features to be detected despite geometric or 

photometric changes in the image: if we have two transformed 
versions of the same image, features should be detected in 
corresponding locations 

 Models of Image Change - Transformation 
 Geometry 

 Rotation 

 Similarity (rotation + uniform scale) 
 

 Affine (scale dependent on direction) 
valid for: orthographic camera, locally planar object 

 Photometry 

 Affine intensity change (I  a I + b) 



Harris Detector: Some Properties 

 Rotation invariance 

Ellipse rotates but its shape (i.e. eigenvalues) 

remains the same 

Corner response R is invariant to image rotation 



Harris Detector: Some Properties 

 Rotation Invariant Detection 

Repeatability rate: 

# correspondences 

# possible correspondences 



Harris Detector: Some Properties 

 Partial invariance to affine intensity change 

 Only derivatives are used => invariance 

to intensity shift I  I + b 

 Intensity scale: I  a I 

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 

Partially invariant to affine intensity change 



Harris Detector: Some Properties 

 But: non-invariant to image scale! 

All points will be 

classified as edges 
Corner ! 

Not invariant to scaling 



Harris Detector: Some Properties 

 Quality of Harris detector for different scale changes 

Repeatability rate: 

# correspondences 

# possible correspondences 



Edge  

Corner 

Interest Points 

Local Features 



Texture extraction by Interest Points 
112 

 What is an interest point 
 Expressive texture 
 The point at which the direction of the boundary of object 

changes abruptly 

 Intersection point between two or more edge segments 

 Goal: Detect points that are repeatable and distinctive 



Properties of Interest Point Detectors 
113 

 Detect all (or most) true interest points  

 No false interest points 

 Well localized.  

 Robust with respect to noise.  

 Efficient detection 

 Invariant to transformation 



Interest Point Detection Idea 
114 

 Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters 



Local features extraction: main components 
115 

1. Detection: Identify the 
interest points 
 
 
 

2. Description :Extract feature 
vector descriptor surrounding 
each interest point. 
 
 

3. Matching: Determine 
correspondence between 
descriptors in two views 



Key trade‐offs 
116 



Corner as an Interest Point 
117 



Scale Space 
118 

 The concept of scale is essential when computing 
features and descriptors from image data.  

 Real-world objects may contain different types of 
structures at different scales and may therefore appear 
in different ways depending on the scale of observation.  

 When observing objects by a camera or an eye, there is 
an additional scale problem due to perspective effects, 
implying that distant objects will appear smaller than 
nearby objects.  

 A vision system intended to operate autonomously on 
image data acquired from a complex environment must 
therefore be able to handle and be robust to such scale 
variations. 



Scale Invariant Detection 
119 

 Consider regions (e.g. circles) of different sizes around 
a point 

 Regions of corresponding sizes will look the same in 
both images 



Scale Invariant Detection 
120 

 The problem: how do we choose corresponding circles 
independently in each image? 



Scale Invariant Detection 
121 

 Solution: 
 Design a function on the region (circle), which is “scale 

invariant” (the same for corresponding regions, even if 
they are at different scales) 
 Example: average intensity. For corresponding regions (even of 

different sizes) will be the same. 

 For a point in one image, we can consider it as a function 
of region size (circle radius) 



Scale Invariant Detection 
122 



Scale Invariant Detection 
123 

 Common approach: Take a local maximum of this 
function 

 Observation: region size, for which the maximum is 
achieved, should be invariant to image scale. 

 

 

scale = 1/2 

f 

region size 

Image 1 f 

region size 

Image 2 

s1 s2 

Important: this scale invariant region size is found 
in each image independently! 



Scale Invariant Detection 
124 

 A “good” function for scale detection: has one 
stable sharp peak 

f 

region size 

bad 

f 

region size 

bad 

f 

region size 

Good 
! 

• For usual images: a good function would be a 
one which responds to contrast (sharp local 
intensity change) 



Scale invariance 

 Requires a method to repeatably select points in 
location and scale 
 

 The only reasonable scale-space kernel is a Gaussian 
 

 An efficient choice is to detect peaks in the difference 
of Gaussian pyramid 
 

 Difference-of-Gaussian with constant ratio of scales is 
a close approximation to scale-normalized Laplacian 

 

125 

Blur 

Resample

Subtract

Blur 

Resample

Subtract



Pyramid 
126 

 Pyramid is one way to represent images in Multi‐Scale 

 Pyramid can capture global and local features 

 

 



Aside: Image Pyramids 
127 

Bottom level is the original image. 

2nd level is derived from the 

original image according to 

some function 

3rd level is derived from the 

2nd level according to the same 

funtion 

And so on. 



Aside: Mean Pyramid 
128 

Bottom level is the original image. 

At 2nd level, each pixel is the mean 

of 4 pixels in the original image. 

At 3rd level, each pixel is the mean 

of 4 pixels in the 2nd level. 

And so on. 

mean 



SIFT - Scale Invariant Feature Transforms 
129 

 SIFT image features provide a set of features of an object 
that are not affected by many of the complications 
experienced in other methods, such as object scaling and 
rotation. 

 While allowing for an object to be recognized in a larger 
image SIFT image features also allow for objects in multiple 
images of the same location, taken from different positions 
within the environment, to be recognized.  

 SIFT features are also very resilient to the effects of "noise" 
in the image. 

 The SIFT approach, for image feature generation, takes an 
image and transforms it into a "large collection of local 
feature vectors"  



SIFT - Idea 
130 

 Image content is transformed into local feature 
coordinates that are invariant to translation, 
rotation, scale, and other imaging parameters 



Claimed Advantages of SIFT   
131 

 Locality: features are local, so robust to occlusion and clutter 
(no prior segmentation) 

 Distinctiveness: individual features can be matched to a large 
database of objects 

 Quantity: many features can be generated for even small 
objects 

 Efficiency: close to real-time performance 

 Extensibility: can easily be extended to wide range of 
differing feature types, with each adding robustness 



Uses for SIFT  
132 

 Feature points are used also for: 

 Image alignment 

 3D reconstruction 

 Motion tracking 

 Object recognition 

 Indexing and database retrieval 

 Robot navigation 

 … many others 



Overall Procedure at a High Level 
133 

 Step 1: Constructing a scale space 

 Step 2: Laplacian of Gaussian approximation 

 Step 3: Finding Keypoints 

 Step 4: Eliminate edges and low contrast regions 

 Step 5: Assign an orientation to the keypoints 

 Step 6: Generate SIFT features 



Constructing a scale space 
134 

 This stage of the filtering attempts to identify those locations 
and scales that are identifiable from different views of the same 
object.  

 This can be efficiently achieved using a "scale space" function.  
 The scale space is defined by the function: 

 

 L(x, y, σ) = G(x, y, σ) * I(x, y) 
 

     Where: 
 * is the convolution operator,  
 L is a blurred image 
 G is the Gaussian Blur operator 
 I is the input image. 
 x,y are the location coordinates 
 σ is the “scale” parameter. Think of it as the amount of blur. Greater 

the value, greater the blur. 
 

 



Constructing a scale space 
135 

 Example: 



Constructing a scale space 
136 

 SIFT takes scale spaces to 
the next level. 

 Resize the original image 
to half size. And you 
generate blurred out 
images again. And you 
keep repeating. 



Step 2: Laplacian of Gaussian approximation 
137 

 To find key points use Laplacian of Gaussian (LoG)   
 Take an image, and blur it a little.  

 Then calculate second order derivatives on it (or, the 
“laplacian”).  

 The problem is, calculating all those second order 
derivatives is computationally intensive. 

 Solution, use the Difference of Gaussians (DoG). 
 We use the scale space (from previous step). 

 We calculate the difference between two consecutive 
scales. 

 These DoG images are a great for finding out interesting 
key points in the image 



Step 2: Laplacian of Gaussian approximation 
138 

These Difference of Gaussian images are approximately equivalent to 
the Laplacian of Gaussian. And we’ve replaced a computationally 
intensive process with a simple subtraction (fast and efficient). 



Step 2: Laplacian of Gaussian approximation 
139 



How many scales per octave? 
140 

 A collection of 32 real images drawn from a diverse range, including: 
 Outdoor scenes, human faces, aerial photographs, and industrial 

 Each image was then subject to a range of transformations: 
 Rotation, scaling, affine stretch, change in brightness and 

 contrast, and addition of image noise. 



Initial value of sigma 
141 



Step 3: Finding Keypoints 
142 

 To detect the local maxima and 
minima of D(x, y, σ)  

 Each point is compared with its 
8 neighbors at the same scale, 
and its 9 neighbors up and 
down one scale.  

 X is marked as a “key point” if it 
is the greatest or least of all 26 
Neighbours 

 Large number of extrema, 

 computationally expensive 

 Detect the most stable subset 
with a coarse sampling of scales 



Step 4: Eliminate edges and low contrast regions 
143 

 Key points generated in the previous step produce a lot 
of key points. Some of them lie along an edge, or they 
don’t have enough contrast. In both cases, they are not 
useful as features, so we need to get rid of them. 

 

 Reject points with bad contrast: 

 DoG smaller than 0.03 (image values in [0,1]) 

 Reject edges 

 Use Harris detector and keep only corners 



Step 4: Eliminate edges and low contrast regions 
144 



Step 5: Assign an orientation to the keypoints 
145 

 After step 4, we have legitimate key points.  
 We already know the scale at which the keypoint was detected 

(it's the same as the scale of the blurred image). So we have 
scale invariance.  

 The next thing is to assign an orientation to each keypoint. 
This orientation provides rotation invariance 

 This step aims to assign a consistent orientation to the 
keypoints based on local image properties. The keypoint 
descriptor, can then be represented relative to this 
orientation, achieving invariance to rotation. 

 The idea is to collect gradient magnitude and orientation 
around each keypoint (widow 16*16). Then we figure out 
the most prominent orientation(s) in that region. And we 
assign this orientation(s) to the keypoint. 

 This orientation provides rotation invariance 



Step 5: Assign an orientation to the keypoints 
146 

 For each pixel in the widow around Keypoint compute 
gradient magnitude and orientation using finite 
differences: 



Step 5: Assign an orientation to the keypoints 
147 

 The magnitude and orientation is calculated for all pixels 
around the keypoint as following:  
 Create a weighted direction histogram in a neighborhood of a 

key point  
 In this histogram, the 360 degrees of orientation are broken into 

36 bins (each 10 degrees). 
 Lets say the gradient direction at a certain point (in the "orientation 

collection region") is 18.759 degrees, then it will go into the 10-19 
degree bin. And the "amount/weight" that is added to the bin is 
proportional to the magnitude of gradient at that point.  
 In SIFT, you need to blur magnitude of gradient by an amount of 

1.5*sigma.  

 The size of the "orientation collection region" around the 
keypoint depends on it's scale. The bigger the scale, the bigger 
the collection region 
 The window size, or the "orientation collection region", is equal to the 

size of the kernel for Gaussian Blur of amount 1.5*sigma. 

 
 
 



Step 5: Assign an orientation to the keypoints 
148 

 The histogram peaks at 20-29 degrees. So, the keypoint is assigned 
orientation 3 (the third bin). And the “amount” that is added to the bin is 
proportional to the magnitude of gradient at that point 

 Also, any peaks above 80% of the highest peak are converted into a new 
keypoint. This new keypoint has the same location and scale as the original. 
But it’s orientation is equal to the other peak. So, orientation can split up 
one keypoint into multiple keypoints. 



Orientation assignment 
149 



Orientation assignment 
150 



Orientation assignment 
151 



Orientation assignment 
152 



Orientation assignment  
153 

Orientation Visualization  



Making descriptor rotation invariant 
154 

 Rotate patch (window 
around keypoint) according 
to its dominant gradient 
orientation to the 
horizontal orientation 
 The dominant orientation 

will be horizontal orientation 
 This puts the patches into a 

canonical orientation. 
 

 Make scaling according to 
the arrow length  
 Eliminate scaling problem 



Step 6: Generate SIFT features 
155 

 Now we create a fingerprint for each keypoint. This is 
to identify a keypoint.  

 Each point so far has x, y, σ, m, θ 

 Location x,y 

 Scale: σ 

 Gradient magnitude and orientation: m, θ 

 Now we need a descriptor for the region 

 Could sample intensities around point, but… 

 Sensitive to lighting changes 

 Sensitive to slight errors in x, y, θ 



Step 6: Generate SIFT features 
156 

 The idea: 
 We want to generate a very unique fingerprint for the keypoint.  
 It should be easy to calculate.  
 We also want it to be relatively lenient when it is being compared 

against other keypoints.  

 To do this, a 16x16 window around the keypoint. This 16x16 
window is broken into sixteen 4x4 windows. 



Step 6: Generate SIFT features 
157 

 Within each 4x4 window, gradient magnitudes and orientations are 
calculated. These orientations are put into an 8 bin histogram. 

 Any gradient orientation in the range 0-44 degrees add to the first bin. 
45-89 add to the next bin. And so on.  

 The amount added to the bin depends on the magnitude of the gradient.  

 Unlike the past, the amount added also depends on the distance from 
the keypoint. So gradients that are far away from the keypoint will add 
smaller values to the histogram. 

 This is done using a "gaussian weighting function". This function simply 
generates a gradient (it's like a 2D bell curve). You multiple it with the 
magnitude of orientations, and you get a weighted thingy. The farther 
away, the lesser the magnutide. 

 



Step 6: Generate SIFT features 
158 

 Doing this for all 16 pixels, you would've "compiled" 16 
totally random orientations into 8 predetermined bins. 
You do this for all sixteen 4x4 regions.  

 So you end up with 4x4x8 = 128 numbers. Once you 
have all 128 numbers, you normalize them (just like 
you would normalize a vector in school, divide by root 
of sum of squares). These 128 numbers form the 
"feature vector".  

 This keypoint is uniquely identified by this feature 
vector.  



Descriptor Regions (n by n) 
159 



SIFT Keypoint Descriptor Summery  
160 

 Descriptor: 128-D 

 4 by 4 patches, each with 8-D gradient angle histogram: 
4×4×8 = 128 

 Normalized to reduce the effects of illumination change. 

 Position: (x, y) 

 Where the feature is located at. 

 Scale 

 Control the region size for descriptor extraction. 

 Orientation 

 To achieve rotation-invariant descriptor. 



Effect of Noise on SIFT 
161 



Effect of Orientation on SIFT 
162 



Keypoints Matching 
163 

 Given a feature in I1, how to find the best match in I2? 
1. Define distance function that compares two descriptors 
2. Test all the features in I2, find the one with min distance 

 How to define the difference between two features f1, f2? 
 Simple approach is SSD(f1, f2) 

 Sum of square differences between entries of the two descriptors 
 Can give good scores to very ambiguous (bad) matches 



Keypoints Matching 
164 

 How to define the difference between two features f1, 
f2? 
 Better approach: ratio distance = SSD(f1, f2) / SSD(f1, f2’) 

 f2 is best SSD match to f1 in I2 

 f2’ is 2nd best SSD match to f1 in I2 

 gives small values for ambiguous matches 



Keypoints Matching 
165 

 Suppose we use SSD 

 Small values are possible matches but how small? 

 Decision rule: Accept match if SSD < T, where T is a threshold 

 What is the effect of choosing a particular T? 



Keypoints Matching 
166 

 Distance Decision rule:  
 Accept match if SSD < T 

 Example: Large T, T = 250 ⇒ 
 a, b, c are all accepted as matches  

 a and b are true matches (“true positives”) –they are actually matches  

 c is a false match (“false positive”) –actually not a match 



Keypoints Matching 
167 

 Decision rule:  
 Accept match if SSD < T 

 Example: Smaller T, T = 100 ⇒ 
 only a and b are accepted as matches  

 a and b are true matches (“true positives”)  

 c is no longer a “false positive”(it is a “true negative”) 



Visualization of SIFT Key Matching using SSD 
168 



Other Keypoints Detectors and Descriptors 
169 

 Detectors 

 PCA-SIFT 

 SURF 

 FAST 

 ORB 

 BRISK 

 Descriptors 

 SURF 

 BREIF 

 ORP 

 BRISK 



SIFT compared to other algorithms 
170 



Some Comparisons 
171 

 SIFT was the most stable one except for time whereas 
SURF was the fastest with good results. 

 The performance of the descriptor doesn’t depend on 
the detector. Moreover, the SIFT descriptor was the 
best one for different image transformations except 
light changes. 

 Binary descriptors are the best choice for time-
constrained applications with good matching accuracy 

 



Color histogram 

Color Moments 

Color coherence vector 

 

 

Color Features 



Color Features 
173 

 The color feature is one of the most widely used visual 
features in image retrieval.  

 Images characterized by color features have many 
advantages: 
 Robustness. The color histogram is invariant to rotation of 

the image on the view axis, and changes in small steps when 
rotated otherwise or scaled 

 Effectiveness. There is high percentage of relevance between 
the query image and the extracted matching images. 

 Implementation simplicity. The construction of the color 
histogram is a straightforward process 

 Computational simplicity. The histogram computation has 
O(X, Y ) complexity for images of size X × Y . 



Color Features 
174 

 Color features are defined subject to a particular color 
space or model.  

 A number of color spaces have been used in literature, 
such as RGB, HSV, etc. 

 Once the color space is specified, color feature can be 
extracted from images or regions.  

 A number of important color features have been 
proposed in the literatures, including: 
 Color histogram 

 Color moments(CM) 

 Color coherence vector (CCV) 

 Color correlogram, etc. 



Color histogram 
175 

 A color histogram H for a given image is defined as a 
vector H = {h[1], h[2], . . . h[i], . . . , h[N]}  
 Where i represents a color in the color histogram,  
 h[i] is the number of pixels in color i in that image,  
 and N is the number of bins in the color histogram, i.e., the 

number of colors in the adopted color model. 

 In order to compare images of different sizes, color 
histograms should be normalized. 

 Can be used to Measures the similarity of 
 images 
 speech 
 music 

 Issue: 
 how to capture perceptual similarity of an image 



Color histogram 
176 

 The standard measure of similarity used for color 
histograms: 
 A color histogram H(i) is generated for each image h in the 

database (feature vector), 

 The histogram is normalized so that its sum equals unity 
(removes the size of the image), 

 The histogram is then stored in the database, 

 Now suppose we select a model image (the new image to 
match against all possible targets in the database). 



Color histogram 
177 

 Histogram distance measures 



Example for potential problem with histogram 
distance 
178 



Distances of the three checkerboard images 
179 



Another Issue: loss of regional information 
180 



Color Moments 
181 

 Provide measurement for color similarity between images. These value
s of similarity can then be compared to the 
values of images indexed in a database for tasks like image retrieval. 

 The basis of color moments lays in the assumption that the distribution 
of color in an image can be interpreted as a probability distribution.  

 Probability distributions are characterized by a number of unique 
moments (e.g. Normal distributions are differentiated by their mean 
and variance). 

 It therefore follows that if the color in an image follows a certain 
probability distribution, the moments of that distribution can then 
be used as features to identify that image based on color. 

 The first order (mean), the second (variance) and the third order 
(skewness) color moments have been proved to be efficient and 
effective in representing color distributions of images. 



Color Moments 
182 



Color Moments 
183 



Color Moments example 
184 



Color Coherence Vector 
185 

 Color's coherence is the degree to which pixels of that color 
are members of large similarly-colored regions. 

 The images Below have similar color histograms, despite 
their different appearances. 
 The color red appears in both images in approximately the same 

quantities. 



Color Coherence Vector 
186 

 Coherency measure classifies pixels as either coherent 
or incoherent.  

 Coherent pixels are a part of some sizable contiguous 
region, while incoherent pixels are not.  

 A color coherence vector represents this classification 
for each color in the image.  

 CCV's prevent coherent pixels in one image from 
matching incoherent pixels in another.  

 This allows fine distinctions that cannot be made with 
color histograms. 



Color Coherence Vector 
187 

 Computing CCV's 

1. First blur the image. This eliminates small variations 
between neighboring pixels.  

2. Then discretize the color space, such that there are only n 
distinct colors in the image. 

3. Determine the pixel groups by computing connected 
components. 

 Each pixel will belong to exactly one connected component.  

 We classify pixels as either coherent or incoherent depending on 
the size in pixels of its connected component. 

 A pixel is coherent if the size of its connected component 
exceeds a fixed value T; otherwise, the pixel is incoherent. 



Color Coherence Vector 
188 

 Computing CCV's 

 For a given discretized color, some of the pixels with that 
color will be coherent and some will be incoherent.  

 Let us call the number of coherent pixels of the j'th 
discretized color αj and the number of incoherent pixels βj. 

 Clearly, the total number of pixels with that color is αj + βj, 
for each color we compute the pair (αj + βj) which we will 
call the coherence pair for the j'th color.  

 The color coherence vector for the image consists of 

      ((α1+ β2),……….., (αn + βn)) 

 This is a vector of coherence pairs, one for each discretized 
color 



Color Coherence Vector 
189 

 Comparing CCV's 

 Consider two images I and I’, together with their CCV's GI 
and GI’ : 

 

 



Color Features Technique Summery 
190 

CCV: color coherence vector  
DCD: dominant color descriptor 
CSD: color structure descriptor  
SCD: scalable color descriptor respectively 



Shape Descriptor 
Contour based 

Region Based 

Shape Matching 

 

 

Shape Features 



Shape features  
192 

 Shape is probably the most important property that is 
perceived about objects. It allows to predict more facts about 
an object than other features, e.g. color (Palmer 1999) 

 Thus, recognizing shape is crucial for object recognition. In 
some applications it may be the only feature present, e.g. 
logo recognition 

 Shape content description is difficult to define because 
measuring the similarity between shapes is difficult. 

 In order to extract object features, we need an image that 
has undergone image segmentation and any necessary 
morphological filtering. 

 This will provide us with a clearly defined object which can 
be labeled and processed independently. 



Why Shape ? 
193 

These objects are recognized by… 



Why Shape ? 
194 

These objects are recognized by… 

Texture Color Shape 

X X 

X X 

X 

X 

X 

X 



Shape feature categories of applications:  
195 

 Shape retrieval: searching for all shapes in a typically large 
database of shapes that are similar to a query shape. 
Usually all shapes within a given distance from the query 
are determined or the first few shapes that have the 
smallest distance.  

 Shape recognition and classification: determining whether 
a given shape matches a model sufficiently, or which of 
representative class is the most similar.  

 Shape alignment and registration: transforming or 
translating one shape so that it best matches another 
shape, in whole or in part.  

 Shape approximation and simplification: constructing a 
shape with fewer elements (points, segments, triangles, 
etc.), so that it is still similar to the original. 
 



Object Recognition by Shape 
196 

 Source: 2D image of a 3D 
object 

 Object Segmentation 

 Contour Extraction 

 Contour Cleaning 

 Contour Segmentation 

 Matching: Correspondence 
of Visual Parts 



Typical Issues 
197 

 Object segmentation and extraction 

 How to describe object 

 What is the matching techniques 

 Occlusion 

 Noise 

 

 



Shape descriptor 
198 

 Shape descriptor is a set of numbers that are produced 
to represent a given shape feature.  

 A descriptor attempts to quantify the shape in ways 
that agree with human intuition.  

 Good retrieval accuracy requires a shape descriptor to 
be able to effectively find perceptually similar shapes 
from a database.  

 Usually, the descriptors are in the form of a vector.  



Shape descriptor 
199 

 Shape descriptors should meet the following 
requirements: 

 The descriptors should be as complete as possible to 
represent the content of the information items.  

 The descriptors should be represented and stored 
compactly. The size of a descriptor vector must not be too 
large.  

 The computation of the similarity or the distance between 
descriptors should be simple; otherwise the execution time 
would be too long.  

 Descriptors are invariant of variations of scale, rotation and 
translation whenever possible 



Shape features categories  
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 Shape descriptors can be divided into two main categories:  

 Region-based methods use the whole area of an object for shape 
description 

 Contour-based methods use only the information present in the 
contour of an object. 

 Under each class, the different methods are further divided 
into structural approaches and global approaches. This sub-
class is based on whether the shape is represented as a 
whole or represented by segments/sections (primitives).  

 These approaches can be further distinguished into space 
domain and transform domain, based on whether the shape 
features are derived from the spatial domain or from the 
transformed domain. 



Shape features categories  
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Shape features categories  
202 



Boundary Descriptors  

 Chain Code 

 Polygon Approximation 

 Shape number 

 Fourier descriptor 

 Statistical Moments 

 



Chain Codes  

 Chain codes: represent an object boundary by a connected  

sequence of straight line segments of specified length 

and direction. 

4-directional chain code 8-directional chain code 

 Why we focus on a boundary? 

The boundary is a good representation of an object shape 

and also requires a few memory. 



Examples of Chain Codes  

Object  
boundary 

(resampling) 

Boundary 
vertices 

4-directional 
chain code 

8-directional 
chain code 



Chain Codes  
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 Not scale invariant 
 You can provide several chain codes of the same object at difference 

“resolutions” 

 Translation invariant 
 Note that this is different than a chain of (x,y) coordinates 

 We are encoding the boundary itself 

 Codes are sensitive to noise 
 If your boundary has some noise, this will show up in the chain code 

 One solution 
 Resample using a larger grid spacing 
 Also provides a more compact representation 

 Chain Code depends on the starting point 
 We can normalize the chain code to address this problem 

 Assume the chain is a circular sequence  
 (given a chain of 1 to N codes ; N+1 = 1) 
 Redefine the starting point such that we generate an integer of smallest 

magnitude 



The First Difference of a Chain Codes  

 Chain code depends on orientation 
 a rotation results in a different chain code 
 One solution 
 Use the “first difference” of the chain code instead of the 

code itself 
 The difference is obtained by simply counting (counter-

clockwise) the number of directions that separate two 
adjacent elements 

Example: 

 

 

  

1 

2 

3 

0 

Example:  

    - a chain code: 10103322 

    - The first difference =  3133030 

    - Treating a chain code as a  

       circular sequence, we get 

       the first difference = 33133030 

Chain code : The first  

                    difference 

    0  1    1 

    0  2    2 

    0  3    3 

    2  3    1 

    2  0    2 

    2  1     3 

The first difference is rotational 

invariant. 



Representation Polygonal Approximations 

 Polygonal approximations: to represent a boundary by straight line 
segments, and a closed path becomes a polygon.  

 The number of straight line segments used determines the 
accuracy of the approximation.   

 Only the minimum required number of sides necessary to preserve 
the needed shape information should be used (Minimum 
perimeter polygons).   

 A larger number of sides will only add noise to the model.  



Representation Polygonal Approximations 

 Minimum perimeter polygons: (Merging  and splitting) 

 Merging and splitting are often used together to ensure that 
vertices appear where they would naturally in the boundary.   

 A least squares criterion to a straight line is used to stop the 
processing.  



Shape Number  

Shape number of the boundary definition: 

the first difference of smallest magnitude 

 

The order n of the shape number: the 

number of digits in the sequence 

1 

2 

3 

0 



Shape Number (cont.)  

Shape numbers of order  

4, 6 and 8  



Example: Shape Number  

Chain code:  

0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1 

 

First difference: 

3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 

 

Shape No. 

0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3 

1. Original boundary 

2. Find the smallest rectangle 

that fits the shape 

3. Create grid 
4. Find the nearest  

Grid. 



Fourier Descriptor  

Fourier descriptor: view a coordinate (x,y) as a complex number  

(x = real part and y = imaginary part) then apply the Fourier  

transform to a sequence of boundary points. 
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Fourier descriptor : 
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Let s(k) be a coordinate of a boundary point k : 

Reconstruction formula 

Boundary 

points 



Example: Fourier Descriptor  

Examples of reconstruction from Fourier descriptors 
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P is the number of  

Fourier coefficients  

used to reconstruct  

the boundary 



Statistical Moments  

1. Convert a boundary segment into 1D graph 

2. View a 1D graph as a PDF function 

3. Compute the nth order moment of the graph 
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Boundary 

segment 1D graph 

Example of moment: 

The first moment = mean 

The second moment = variance 



Reginal Descriptors 
216 

 Some simple regional descriptors 
 Area of the region 

 Number of pixels in the region 

 Perimeter 
 Length of its boundary 

 Compactness 
 (perimeter2)/area 

 Compactness is invariant to translation, rotation, and scale 

 It is minimal for a disk-shaped region 

 The previously mentioned regional descriptors are often 
used with “blob” detection algorithms 
 Especially “area” and compactness 

 For example, consider that you are looking for circles with radius of 
10 pixels 



Reginal Descriptors 
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 Topological 

 Texture 

 Statistical 

 Structural 

 Spectral 



Topological Descriptors  

Euler number (E): 

HCE 

C = the number of connected  

       components 

H = the number of holes 

• Topology = The study of the properties of a figure that are 
unaffected by any deformation 

• Use to describe holes and connected components of the 
region 
 



Topological Descriptors (cont.)  

E = -1 

E = 0 

Euler Formula 

EHCFQV 

V = the number of vertices 

Q = the number of edges 

F = the number of faces E = -2 



Example: Topological Descriptors  

Original image: 

Infrared image 

Of Washington  

D.C. area 

After intensity 

Thresholding 

(1591 connected 

components  

with 39 holes) 

Euler no. = 1552 

The largest 

connected 

area  

(8479 Pixels) 

(Hudson river) 

After thinning 



Texture Descriptors  

Purpose: to describe “texture” of the region. 

Examples: optical microscope images: 

Superconductor 

(smooth texture) 

Cholesterol 

(coarse texture) 

Microprocessor 

(regular texture) 

A 

B C 



Regional Descriptors Texture 

 Texture is usually defined as the smoothness or roughness of a 
surface.   

 In computer vision, it is the visual appearance of the 
uniformity or lack of uniformity of brightness and color. 

 There are two types of texture: random and regular.   
 Random texture cannot be exactly described by words or 

equations; it must be described statistically.  The surface of 
a pile of dirt or rocks of many sizes would be random.   

 Regular texture can be described by words or equations or 
repeating pattern primitives.  Clothes are frequently made 
with regularly repeating patterns. 

 Random texture is analyzed by statistical methods. 
 Regular texture is analyzed by structural or spectral (Fourier) 

methods. 



Texture descriptions 
223 

 Three main approaches: 

1. Statistical: moments, co-occurrence matrix 

2. Structural, viewing a texture as an arrangement of 
texture primitives 

3. Spectral, using the Fourier transform to detect global 
periodicities 



Statistical Descriptors - Moments  

 Let z be a random variable denoting gray levels and let p(zi), 
i=0,1,…,L-1, be the corresponding histogram, where L is the number 
of distinct gray levels. 

 The nth moment of z: 

 

 

 

 

 The measure R: 

 

 The uniformity: 

 

 The average entropy: 
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Example:   The 2nd moment = variance  measure “smoothness” 

     The 3rd moment  measure “skewness” 

     The 4th moment  measure “uniformity” (flatness) 



Statistical Descriptors - Moments  

Smooth Coarse Regular 



Statistical Descriptors - co-occurrence matrix 
226 

 Statistically sampling the way certain grey-levels occur in 
relation to other grey-levels. 

 For a position operator p, we can define a matrix Pij that counts 
the number of times a pixel with grey-level I occurs at position p 
from a pixel with grey-level j. 

 For example, if we have three distinct grey-levels 0, 1, and 2, 
and the position operator p is “lower right”, the counts matrix P 
of the image 

 If we normalize the matrix P by the total number of pixels so 
that each element is between 0 and 1, we get a grey-level co-
occurrence matrix C. 



Co-Occurrence Matrices 

  For a given co-occurrence matrix P(a, b), we can compute 
the following six important characteristics: 

 You should compute these six characteristics for multiple 
displacement vectors, including different directions. 

 


ba

baP
,

2 ),(Energy


ba

baPbaP
,

2 ),(log),(Entropy

),(maxyprobabilit Maximum
,

baP
ba



 
ba

baPba
,

1 2,usually  ,),(||Contrast 



Co-Occurrence Matrices 


 


baba ba

baP

;, ||

),(
moment difference Inverse





 

yx

ba

yxbaPab



 


,

),()(

nCorrelatio


ba

x baPa ),(


ab

y baPb ),(

 
ba

xx baPa ),()( 2

 
ab

yy baPb ),()( 2



Structural Approaches 

 Structural concepts: 

 Define a grammar for the way that the 
pattern of the texture produces 
structure. 

 Suppose that we have a rule of the form 
S→aS, which indicates that the symbol S 
may be rewritten as aS. 

 If a represents a circle and the meaning 
of “circle to the right” is assigned to a 
string of the form aaaa… 



Spectral Approaches 

 For non-random primitive spatial patterns, the 2-
dimensional Fourier transform allows the patterns to be 
analyzed in terms of spatial frequency components and 
direction.  

 It may be more useful to express the spectrum in terms of 
polar coordinates, which directly give direction as well as 
frequency. 

 Let            is the spectrum function, and r and    are the 
variables in this coordinate system. 

 For each direction    ,            may be considered a 1-D 
function          . 

 For each frequency r,           is a 1-D function. 

 A global description: 
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Divide into areas 

by angles 

Fourier Approach for Texture Descriptor  

Original 

image 

Fourier 

coefficient 

image 

FFT2D 

+FFTSHIFT 

Sum all pixels 

in each area 

Divide into areas 

by radius 

Sum all pixels 

in each area 
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Concept: convert 2D spectrum into 1D graphs 



Fourier Approach for Texture Descriptor  
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Moments of Two-D Functions  
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The moment of order p + q 

The central moments of order p + q 



Invariant Moments of Two-D Functions  
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Invariant moments: independent of rotation, translation, scaling, 
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Example: Invariant Moments of Two-D Functions  

1. Original image 2. Half size 3. Mirrored 

4. Rotated  2 degree 5. Rotated 45 degree 



Invariant moments of images in the previous slide 

Example: Invariant Moments of Two-D Functions  

      Invariant moments are independent of rotation, translation, 

scaling, and reflection 



Shape features categories Comparison 
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 Contour-based approaches are more popular than 
region-based approaches in literature.  

 Human beings are thought to discriminate shapes mainly 
by their contour features. 

 However, there are several limitations with contour-
based methods. 

 contour shape descriptors are generally sensitive to noise 
and variations because they only use a small part of shape 
information 

 In many cases, the shape contour is not available. 

 In some applications, shape content is more important 
than the contour features. 



Shape features categories Comparison 
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 Region-base methods are more robust as they use all 
the shape information available; they can be applied to 
general applications; and 

 they generally provide more accurate retrieval. In addition, 

 region-based methods can cope well with shape defection, 
which is a common problem for contour-based shape 
representation techniques.  

 Although region-based methods make use of all the 
shape information, it is not necessarily more complex 
than contour-based methods 



Shape features categories Performance 
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Shape features categories Performance 
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Shape Descriptor 
Contour based 

Region Based 

Shape Matching 

 

 

Shape Features 



Shape-Based Recognition 
243 

 High-level feature extraction concerns in finding shapes 
in computer images.  

 Humans can recognize many objects based on shape 
alone 

 Fundamental cue for many object categories 

 Invariant to photometric variation. 

Similar to a human in terms of shape, but very different 
in terms of pixel values. 



kinds of problems addressed by shape matching 
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 Computation problems: compute the similarity between two 
patterns. 

 Decision problems: given a threshold, decide if the 
similarity/dissimilarity is larger/smaller than the threshold. 

 Decision problem: given a threshold, decide if there is a 
transformation after which the dissimilarity between the 
transformed shape and the other shape is less than the 
threshold. 

 Optimization problem: find the transformation that minimizes 
the dissimilarity between the transformed shape and the other 
shape. 

 Approximate optimization problem: Often, the complexities of 
solving the above problems are extremely high. For such a case, 
an approximation algorithm finds a transformation that permits 
a dissimilarity between the two shapes that is within a constant 
factor from the minimum dissimilarity. 



Applications 
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 Shape retrieval: search for shapes in a large database 
that are similar to a query shape 

 Shape recognition and classification: determine if a 
given shape is sufficiently similar to another shape, or 
find the most similar shape from a set of shapes. 

 Shape alignment and registration: transform one 
shape to find the best matching to a second shape. 

 Shape approximation and simplification: create a 
shape that is less complex (with fewer vertices, 
triangles, etc.), but still similar to the original shape. 



Types of matching 

 Direct use of pixel 

 Correlation 

 Use low-level features 

 Edges or corners 

 High-level matchers 

 Use identified parts of objects 

 Relations between features. 



Shape Matching Approaches 
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 Distance based – Binary images 

 Hausdorff Distance 

 Shape Context 

 Correlation Based – Gray level images 

 Hierarchical Approach 

 Hierarchical Matching 

 Machine Learning Approach 

 Boundary Fragment Model 



Hausdorff Distance 
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 Use Hausdorff distance to compare images to a model 

 Fast and simple approach 

 Tolerant of small position errors 

 Model is only allowed to translate with respect to the 
image 

 Can be extended to allow rotation and scale 



Hausdorff Distance 
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 A means of determining the resemblance of one point 
set to another 

 Examines the fraction of points in one set that lie near 
points in the other set 

 

 

 

 

 Intuitively, the function h(P,Q) finds the point p from P 
that is farthest from any point in Q and measures the 
distance from p to its nearest neighbor in Q. 



Hausdorff Distance - Example 
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Given two sets of points 
A and B, find h(A,B) 



Hausdorff Distance - Example 
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Compute the distance between a1 and each bj 



Hausdorff Distance - Example 
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Keep the shortest 



Hausdorff Distance - Example 
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Do the same for a2 



Hausdorff Distance - Example 
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Find the largest of these two distances 



Hausdorff Distance - Example 
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This is h(A,B) 



Hausdorff Distance - Example 
256 

This is h(B,A) 



Hausdorff Distance - Example 
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H(A,B) = max(h(A,B),h(B,A)) 



Hausdorff Distance - Example 
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This is H(A,B) 



Hausdorff Distance 
259 



Hausdorff Distance- Example Matching 
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Hausdorff Distance- Example Matching 
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Comparing Binary Feature Maps 
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 Binary “image” specifying feature locations 

 In x,y or x,y,scale 

 Even small variations will cause maps not to align 
precisely 

 Distance transforms a natural way to “blur” feature 
locations geometrically 

 Natural generalization also applies not just to binary 
data but to any cost or height map 



Distance Transform 
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 The distance transform is an operator normally only applied to 
binary images.  

 Distance Transform is a function  that for each image pixel  p 
assigns a  non-negative number corresponding to distance from 
p  to the nearest feature in the image  I          

 The result of the transform is a graylevel image that looks 
similar to the input image, except that the graylevel intensities 
of points inside foreground regions are changed to show the 
distance to the closest boundary from each point. 
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Uses of Distance Transforms 
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 Image matching and object recognition 

 – Hausdorff and Chamfer matching 

 – Skeletonization 

original distance transform edges 

Value at (x,y) tells how far 

that position is from the 

nearest edge point 



Shape Matching by Shape Contexts 
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 The shape context is intended to be a way of describing 
shapes that allows for measuring shape similarity and 
the recovering of point correspondences 

 Shape contexts for shape matching steps: 

 Randomly select a set of points that lie on the edges of a 
known shape and another set of points on an unknown 
shape. 

 Compute the shape context of each point found in step 1. 

 Match each point from the known shape to a point on an 
unknown shape.  

 Calculate the "shape distance" between each pair of points 
on the two shapes.  



Shape Matching by Shape Contexts 
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 Step 1: Finding a list of points on shape edges 

 The approach assumes that the shape of an object is 
essentially captured by a finite subset of the points on the 
internal or external contours on the object.  

 These can be simply obtained using the Canny edge 
detector and picking a random set of points from the 
edges.  

 Note that these points need not and in general do not 
correspond to key-points such as maxima of curvature or 
inflection points.  

 It is preferable to sample the shape with roughly uniform 
spacing, though it is not critical 



Shape Matching by Shape Contexts 
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 Step 2: Computing the shape context 

 The basic idea  

 Pick n points on the contours of a shape.  

 For each point pi on the shape, consider the n − 1 vectors 
obtained by connecting pi to all other points. The set of all these 
vectors is a rich description of the shape localized at that point 
but is far too detailed. The key idea is that the distribution over 
relative positions is a robust, compact, and highly discriminative 
descriptor.  

 The point pi, the coarse histogram of the relative coordinates of 
the remaining n − 1 points, is defined to be the shape context 
of pi.  

 The bins are normally taken to be uniform in log-polar space. 



Shape Matching by Shape Contexts 
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Step 2: Computing the shape context 



Shape Matching by Shape Contexts 
269 

 Step 3: Computing the cost matrix 

 Consider two points p and q that have normalized K-bin 
histograms (i.e. shape contexts) g(k) and h(k). As shape 
contexts are distributions represented as histograms, it is 
natural to use the χ2 test statistic as the "shape context 
cost" of matching the two points: 

 

 

 

 

 The values of this range from 0 to 1 

 



Shape Matching by Shape Contexts 
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 Step 3: Computing the cost matrix 

 In addition to the shape context cost, an extra cost based 
on the appearance can be added. For instance, it could be 
a measure of tangent angle dissimilarity (particularly useful 
in digit recognition): 

 

 

 

 

 Its values also range from 0 to 1 



Shape Matching by Shape Contexts 
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 Step 3: Computing the cost matrix 

 Now the total cost of matching the two points could be a 
weighted-sum of the two costs: 

 

 

 

 Now for each point pi on the first shape and a point qj on 
the second shape, calculate the cost as described and call 
it Ci,j. This is the cost matrix. 



Shape Matching by Shape Contexts 
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 Step 4: Finding the matching that minimizes total cost 

 Now, a one-to-one matching pi that matches each 
point pi on shape 1 and qj on shape 2 that minimizes the 
total cost of matching is needed 

 This can be done in O(N3) time using the Hungarian 
method, although there are more efficient algorithms 

 

 

https://en.wikipedia.org/wiki/Hungarian_method
https://en.wikipedia.org/wiki/Hungarian_method


Shape Matching by Shape Contexts 
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 (a,b) Original image pair. 
 (c) Edges and tangents of first 

letter with 50 sample points.  
 (d) Vectors from a sample 

point (at left, middle) to all 
other points. 

 (d) histogram of vectors with 
5 and 6 bins, respectively. 
(Dark=large value.)  

 (f) Correspondences found 
using Hungarian method, 
with weights given by sum of 
two terms: histogram 
dissimilarity and tangent 
angle dissimilarity. 



Application: Digit Recognition 

Training set 
size: 
20,000 
 
Test set 
size: 
10,000 
 
Error: 
0.63% 



Application: Breaking CAPTCHA 

space 

sock 

92% success rate 
on 

EZ-Gimpy 



Application: Trademark Retrieval 

 Can be used to find 
different shapes 
with similar 
elements. 

 

 Useful to 
determine cases of 
trademark 
infringement. 



Shape Matching by Shape Contexts – Invariance  
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 Translational invariance come naturally to shape context.  

 Scale invariance is obtained by normalizing all radial 
distances by the mean distance between all the point pairs 
in the shape although the median distance can also be 
used. 

 Shape contexts are empirically demonstrated to be robust 
to deformations, noise, and outliers using synthetic point 
set matching experiments. 

 One can provide complete rotation invariance in shape 
contexts. One way is to measure angles at each point 
relative to the direction of the tangent at that point (since 
the points are chosen on edges). 

 



Other Method for Shape Matching 
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 Matching Images/Video Using Local Self-Similarities 

 The Pyramid Match Kernel 

 Hierarchical Matching of Deformable Shapes 

 A Boundary-Fragment-Model for Object Detection 



Features Post Processing 
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 Number and types of features have a direct effect 
on the performance of classification and 
clustering techniques besides the model 
efficiency in time and memory 

 Two Approaches for analyzing features the  
 Dimensionality Reduction 

 Feature Selection 

 


